1,139 research outputs found
Surface radiation budget for climate applications
The Surface Radiation Budget (SRB) consists of the upwelling and downwelling radiation fluxes at the surface, separately determined for the broadband shortwave (SW) (0 to 5 micron) and longwave (LW) (greater than 5 microns) spectral regions plus certain key parameters that control these fluxes, specifically, SW albedo, LW emissivity, and surface temperature. The uses and requirements for SRB data, critical assessment of current capabilities for producing these data, and directions for future research are presented
GUIDE FOR PROGRAM EVALUATIO??
Extension programs must be evaluated in order to assess their value to participants, institutions, funders, and all other stakeholders. Evaluations can be especially useful when the program has specific objectives that are measurable, either qualitatively and quantitatively. There are many different methods and formats for evaluation, and choosing the correct evaluation can be critical to ensuring the accuracy and relevance of the evaluation results. Considerable thought must be put into determining the correct method for an evaluation, and they must always be focused on the specific objectives of the extension program. After administering an evaluation, the results should be communicated back to the stakeholders of the program in an effective manner and, after some deliberation, the program should be considered for alteration if deemed necessary. This paper aims to be a ‘how-to’ guide for development, administration, and appraisal of evaluations and evaluation results for a broad spectrum of extension programs.extension program, evaluation, LOGIC
Science requirements for a global change technology architecture trade study
Science requirements for a global change technology initiative (GCTI) Architecture Trade Study were established by reviewing and synthesizing results from recent studies. A scientific rationale was adopted and used to identify a comprehensive set of measureables and their priorities. Spatial and temporal requirements for a number of measurement parameters were evaluated based on results from several working group studies. Science requirements were defined using these study results in conjunction with the guidelines for investigating global changes over a time scale of decades to centuries. Requirements are given separately for global studies and regional process studies. For global studies, temporal requirements are for sampling every 1 to 12 hours for atmospheric and radiation parameters and 1 day or more for most earth surface measurements. Therefore, the atmospheric measureables provide the most critical drivers for temporal sampling. Spatial sampling requirements vary from 1 km for land and ocean surface characteristics to 50 km for some atmospheric parameters. Thus, the land and ocean surface parameters have the more significant spatial variations and provide the most challenging spatial sampling requirements
Curve fits of predicted inviscid stagnation-point radiative heating rates, cooling factors, and shock standoff distances for hyperbolic earth entry
Curve-fit formulas are presented for the stagnation-point radiative heating rate, cooling factor, and shock standoff distance for inviscid flow over blunt bodies at conditions corresponding to high-speed earth entry. The data which were curve fitted were calculated by using a technique which utilizes a one-strip integral method and a detailed nongray radiation model to generate a radiatively coupled flow-field solution for air in chemical and local thermodynamic equilibrium. The range of free-stream parameters considered were altitudes from about 55 to 70 km and velocities from about 11 to 16 km.sec. Spherical bodies with nose radii from 30 to 450 cm and elliptical bodies with major-to-minor axis ratios of 2, 4, and 6 were treated. Powerlaw formulas are proposed and a least-squares logarithmic fit is used to evaluate the constants. It is shown that the data can be described in this manner with an average deviation of about 3 percent (or less) and a maximum deviation of about 10 percent (or less). The curve-fit formulas provide an effective and economic means for making preliminary design studies for situations involving high-speed earth entry
Limb-darkening functions as derived from along-track operation of the ERBE scanning radiometer for January 1985
During January 1985, the scanning radiometer aboard the Earth Radiation Budget Satellite was operated to scan along-track. These data have been analyzed to produce limb-darkening functions for Earth emitted radiation, which relate the radiance in any given direction to the radiant exitance. Limb-darkening functions are presented in tabular form and shown as figures for 10 day cases and 12 night cases, corresponding to various scene types and latitude zones. The scene types were computed using measurements within 10 deg of zenith. The limb-darkening functions have values of 1.03 to 1.09 at zenith, with 1.06 being typical. It is found that latitude causes a variation on the order of 1 percent, except for zenith angles greater than 70 deg. These limb-darkening models are about 2 percent higher at zenith than the models derived from Nimbus 7 data
Phase function, backscatter, extinction, and absorption for standard radiation atmosphere and El Chichon aerosol models at visible and near-infrared wavelengths
Tabular values of phase function, Legendre polynominal coefficients, 180 deg backscatter, and extinction cross section are given for eight wavelengths in the atmospheric windows between 0.4 and 2.2 microns. Also included are single scattering albedo, asymmetry factor, and refractive indices. These values are based on Mie theory calculations for the standard rediation atmospheres (continental, maritime, urban, unperturbed stratospheric, volcanic, upper atmospheric, soot, oceanic, dust, and water-soluble) assest measured volcanic aerosols at several time intervals following the El Chichon eruption. Comparisons of extinction to 180 deg backscatter for different aerosol models are presented and related to lidar data
A modified method of integral relations approach to the blunt-body equilibrium air flow field, including comparisons with inverse solutions
Numerical calculation of inviscid adiabatic flow field around blunt bodies at hypersonic speed
A robust pseudo-inverse spectral filter applied to the Earth Radiation Budget Experiment (ERBE) scanning channels
Computer simulations of a least squares estimator operating on the ERBE scanning channels are discussed. The estimator is designed to minimize the errors produced by nonideal spectral response to spectrally varying and uncertain radiant input. The three ERBE scanning channels cover a shortwave band a longwave band and a ""total'' band from which the pseudo inverse spectral filter estimates the radiance components in the shortwave band and a longwave band. The radiance estimator draws on instantaneous field of view (IFOV) scene type information supplied by another algorithm of the ERBE software, and on a priori probabilistic models of the responses of the scanning channels to the IFOV scene types for given Sun scene spacecraft geometry. It is found that the pseudoinverse spectral filter is stable, tolerant of errors in scene identification and in channel response modeling, and, in the absence of such errors, yields minimum variance and essentially unbiased radiance estimates
Colored dissolved organic matter in shallow estuaries : relationships between carbon sources and light attenuation
© The Author(s), 2016. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Biogeosciences 13 (2016): 583-595, doi:10.5194/bg-13-583-2016.Light availability is of primary importance to the ecological function of shallow estuaries. For example, benthic primary production by submerged aquatic vegetation is contingent upon light penetration to the seabed. A major component that attenuates light in estuaries is colored dissolved organic matter (CDOM). CDOM is often measured via a proxy, fluorescing dissolved organic matter (fDOM), due to the ease of in situ fDOM sensor measurements. Fluorescence must be converted to CDOM absorbance for use in light attenuation calculations. However, this CDOM–fDOM relationship varies among and within estuaries. We quantified the variability in this relationship within three estuaries along the mid-Atlantic margin of the eastern United States: West Falmouth Harbor (MA), Barnegat Bay (NJ), and Chincoteague Bay (MD/VA). Land use surrounding these estuaries ranges from urban to developed, with varying sources of nutrients and organic matter. Measurements of fDOM (excitation and emission wavelengths of 365 nm (±5 nm) and 460 nm (±40 nm), respectively) and CDOM absorbance were taken along a terrestrial-to-marine gradient in all three estuaries. The ratio of the absorption coefficient at 340 nm (m−1) to fDOM (QSU) was higher in West Falmouth Harbor (1.22) than in Barnegat Bay (0.22) and Chincoteague Bay (0.17). The CDOM : fDOM absorption ratio was variable between sites within West Falmouth Harbor and Barnegat Bay, but consistent between sites within Chincoteague Bay. Stable carbon isotope analysis for constraining the source of dissolved organic matter (DOM) in West Falmouth Harbor and Barnegat Bay yielded δ13C values ranging from −19.7 to −26.1 ‰ and −20.8 to −26.7 ‰, respectively. Concentration and stable carbon isotope mixing models of DOC (dissolved organic carbon) indicate a contribution of 13C-enriched DOC in the estuaries. The most likely source of 13C-enriched DOC for the systems we investigated is Spartina cordgrass. Comparison of DOC source to CDOM : fDOM absorption ratios at each site demonstrates the relationship between source and optical properties. Samples with 13C-enriched carbon isotope values, indicating a greater contribution from marsh organic material, had higher CDOM : fDOM absorption ratios than samples with greater contribution from terrestrial organic material. Applying a uniform CDOM : fDOM absorption ratio and spectral slope within a given estuary yields errors in modeled light attenuation ranging from 11 to 33 % depending on estuary. The application of a uniform absorption ratio across all estuaries doubles this error. This study demonstrates that light attenuation coefficients for CDOM based on continuous fDOM records are highly dependent on the source of DOM present in the estuary. Thus, light attenuation models for estuaries would be improved by quantification of CDOM absorption and DOM source identification.Funding was provided by the Woods Hole
Oceanographic Institution Summer Student Fellowship Program
and the USGS Coastal and Marine Geology Program
AVHRR and VISSR satellite instrument calibration results for both Cirrus and marine stratocumulus IFO periods
Accurate characterizations of some cloud parameters are dependent upon the absolute accuracy of satellite radiance measurements. Visible wavelength measurements from both the AVHRR and VISSR instruments are often used to study cloud characteristics. Both of these instruments were radiometrically calibrated prior to launch, but neither has an onboard device to monitor degradation after launch. During the FIRE/SRB cirrus Intensive Field Operation (IFO), a special effort was made to monitor calibration of these two instruments onboard the NOAA-9 and GOES-6 spacecraft. In addition, several research groups have combined their efforts to assess the long-term performance of both instruments. These results are presented, and a limited comparison is made with the ERBE calibration standard
- …
