38,546 research outputs found

    Advanced satellite workstation: An integrated workstation environment for operational support of satellite system planning and analysis

    Get PDF
    A prototype integrated environment, the Advanced Satellite Workstation (ASW), is described that has been developed and delivered for evaluation and operator feedback in an operational satellite control center. The current ASW hardware consists of a Sun Workstation and Macintosh II Workstation connected via an ethernet Network Hardware and Software, Laser Disk System, Optical Storage System, and Telemetry Data File Interface. The central mission of ASW is to provide an intelligent decision support and training environment for operator/analysts of complex systems such as satellites. There have been many workstation implementations recently which incorporate graphical telemetry displays and expert systems. ASW is a considerably broader look at intelligent, integrated environments for decision support, based upon the premise that the central features of such an environment are intelligent data access and integrated toolsets. A variety of tools have been constructed in support of this prototype environment including: an automated pass planner for scheduling vehicle support activities, architectural modeler for hierarchical simulation and analysis of satellite vehicle subsystems, multimedia-based information systems that provide an intuitive and easily accessible interface to Orbit Operations Handbook and other relevant support documentation, and a data analysis architecture that integrates user modifiable telemetry display systems, expert systems for background data analysis, and interfaces to the multimedia system via inter-process communication

    The surface/atmosphere exchange of gaseous ammonia. Final Report

    Get PDF

    The MSFC space station/space operations mechanism test bed

    Get PDF
    The Space Station/Space Operations Mechanism Test Bed consists of the following: a hydraulically driven, computer controlled Six Degree-of-Freedom Motion System (6DOF); a six degree-of-freedom force and moment sensor; remote driving stations with computer generated or live TV graphics; and a parallel digital processor that performs calculations to support the real time simulation. The function of the Mechanism Test Bed is to test docking and berthing mechanisms for Space Station Freedom and other orbiting space vehicles in a real time, hardware-in-the-loop simulation environment. Typically, the docking and berthing mechanisms are composed of two mating components, one for each vehicle. In the facility, one component is attached to the motion system, while the other component is mounted to the force/moment sensor fixed in the support structure above the 6DOF. The six components of the contact forces/moments acting on the test article and its mating component are measured by the force/moment sensor

    An Emphatic Approach to the Problem of Off-policy Temporal-Difference Learning

    Full text link
    In this paper we introduce the idea of improving the performance of parametric temporal-difference (TD) learning algorithms by selectively emphasizing or de-emphasizing their updates on different time steps. In particular, we show that varying the emphasis of linear TD(λ\lambda)'s updates in a particular way causes its expected update to become stable under off-policy training. The only prior model-free TD methods to achieve this with per-step computation linear in the number of function approximation parameters are the gradient-TD family of methods including TDC, GTD(λ\lambda), and GQ(λ\lambda). Compared to these methods, our _emphatic TD(λ\lambda)_ is simpler and easier to use; it has only one learned parameter vector and one step-size parameter. Our treatment includes general state-dependent discounting and bootstrapping functions, and a way of specifying varying degrees of interest in accurately valuing different states.Comment: 29 pages This is a significant revision based on the first set of reviews. The most important change was to signal early that the main result is about stability, not convergenc

    Heterodyne detection of CO2 emission lines and wind velocities in the atmosphere of Venus

    Get PDF
    Strong 10 micrometer line emission from (c-12)(o-16)2 in the upper atmosphere of Venus was detected by heterodyne techniques. Observations of the absolute Doppler shift of the emission features indicate mean zonal wind velocities less than 10 m/sec in the upper atmosphere near the equator. No evidence was found of the 100 m/sec wind velocity implied by the apparent 4-day rotation period of ultraviolet cloud features

    Comparison of Torpedograss and Pickerelweed Susceptibility to Glyphosate

    Get PDF
    Torpedograss (Panicum repens L.) is one of the most invasive exotic plants in aquatic systems. Repeat applications of (N-phosphonomethyl) glycine (glyphosate) herbicides provide limited control of torpedograss; unfortunately, glyphosate often negatively impacts most non-target native species that grow alongside the weed. This experiment studied the effect of glyphosate on pickerelweed (Pontederia cordata L.), a native plant that shares habitats with torpedograss. Actively growing plants of torpedograss and pickerelweed were cultured in 8-liter containers and sprayed to wet with one of four rates of glyphosate: 0%, 0.75%, 1.0%, or 1.5%. Each treatment included a surfactant to aid in herbicide uptake and a surface dye to verify uniform application of the treatments. All herbicide treatments were applied with a backpack sprayer to intact plants and to cut stubble of both species. Four replicates were treated for each species-rategrowth combination during each of two experiment periods. Plant dry weights 8 weeks after herbicide application suggest that torpedograss was effectively controlled by the highest rate of glyphosate applied to cut stubble. Pickerelweed was unaffected when the highest rate of glyphosate was applied as a cut-and-spray treatment. These data suggest that a cut-and-spray application of a 1.5% solution of glyphosate may be an effective strategy to control torpedograss without deleteriously affecting pickerelweed. (PDF contains 4 pages.

    Molecular abundances in OMC-1: The chemical composition of interstellar molecular clouds and the influence of massive star formation

    Get PDF
    We present here an investigation of the chemical composition of the various regions in the core of the Orion molecular cloud (OMC-1) based on results from the Caltech Owens Valley Radio Observatory (OVRO) millimeter-wave spectral line survey (Sutton et al.; Blake et al.). This survey covered a 55 GHz interval in the 1.3 mm (230 GHz) atmospheric window and contained emission from over 800 resolved spectral features. Of the 29 identified species 14 have a sufficient number of detected transitions to be investigated with an LTE "rotation diagram" technique, in which large numbers of lines are used to estimate both the rotational excitation and the overall abundance. The rotational temperatures and column densities resulting from these fits have then been used to model the emission from those remaining species which either have too few lines or which are too weak to be so analyzed. When different kinematic sources of emission are blended to produce a single feature, Gaussian fits have been used to derive the individual contributions to the total line profile. The uniformly calibrated data in the unique and extensive Caltech spectral line survey lead to accurate estimates of the chemical and physical parameters of the Orion molecular cloud, and place significant constraints on models of interstellar chemistry. A global analysis of the observed abundances shows that the markedly different chemical compositions of the kinematically and spatially distinct Orion subsources may be interpreted in the framework of an evolving, initially quiescent, gas-phase chemistry influenced by the process of massive star formation. The chemical composition of the extended Orion cloud complex is similar to that found in a number of other objects, but the central regions of OMC-1 have had their chemistry selectively altered by the radiation and high-velocity outflow from the young stars embedded deep within the interior of the molecular cloud. Specifically, the extended ridge clouds are inferred to have a low (subsolar) gas-phase oxygen content from the prevalence of reactive carbon-rich species like CN, CCH, and C_3H_2 also found in more truly quiescent objects such as TMC-1. The similar abundances of these and other simple species in clouds like OMC-1, Sgr B2, and TMC-1 lend support to gas-phase ion-molecule models of interstellar chemistry, but grain processes may also play a significant role in maintaining the overall chemical balance in such regions through selective depletion mechanisms and grain mantle processing. In contrast, the chemical compositions of the more turbulent plateau and hot core components of OMC-1 are dominated by high-temperature, shock-induced gas and grain surface neutral-neutral reaction processes. The high silicon/sulfur oxide and water content of the plateau gas is best modeled by fast shock disruption of smaller grain cores to release the more refractory elements followed by a predominantly neutral chemistry in the cooling postshock regions, while a more passive release of grain mantle products driven toward kinetic equilibrium most naturally explains the prominence of fully hydrogenated N-containing species like HCN, NH_3 , CH_3CN, and C_2H_5CN in the hot core. The clumpy nature of the outflow is illustrated by the high-velocity emission observed from easily decomposed molecules such as H_2CO. Areas immediately adjacent to the shocked core in which the cooler, ion-rich gas of the surrounding molecular cloud is mixed with water/oxygen rich gas from the plateau source are proposed to give rise to the enhanced abundances of complex internal rotors such as CH_30H, HCOOCH_3 , and CH_30CH_3 whose line widths are similar to carbon-rich species such as CN and CCH found in the extended ridge, but whose rotational temperatures are somewhat higher and whose spatial extents are much more compact

    Quantitative detection of atropine-delayed gastric emptying in the horse by the <sup>13</sup>C-octanoic acid breath test

    Get PDF
    The &lt;sup&gt;13&lt;/sup&gt;C-octanoic acid breath test has been correlated significantly to radioscintigraphy for measurement of gastric emptying indices in healthy horses. The objective of this study was to investigate the validity of the test for measurement of equine delayed gastric emptying, prior to its potential clinical application for this purpose. A model of atropine- induced gastroparesis was used. Gastric emptying rate was measured twice in 8 horses using concurrent radioscintigraphy and/or breath test after treatment i.v. with either atropine (0.035 mg/kg bwt) or saline in randomised order. Analysis of both data sets demonstrated that the atropine treatment had caused a significant delay in gastric emptying rate. Paired breath test data showed an atropine-induced delay in gastric half-emptying time t(1/2)), with no overlap in the 99% Cl range (P&#60;0.001). Significant correlations were found between scintigraphy and &lt;sup&gt;13&lt;/sup&gt;C-octanoic acid breath test for calculation of both t(1/2) (P&#60;0.01) and lag phase duration (P&#60;0.05) in the atropine-delayed emptying results. The mean (s.d.) bias in breath test t(1/2) when compared with scintigraphy was 1.78 (0.58) h. The results demonstrated that the &lt;sup&gt;13&lt;/sup&gt;C-octanoic acid breath test was an effective diagnostic modality for the measurement of equine delayed gastric emptying. The technique offers advantages to existing methods for clinical investigation, as it is noninvasive, not radioactive, quantitative and requires minimal equipment or training to perform
    corecore