2,604 research outputs found

    Improving Skin Condition Classification with a Visual Symptom Checker Trained using Reinforcement Learning

    Full text link
    We present a visual symptom checker that combines a pre-trained Convolutional Neural Network (CNN) with a Reinforcement Learning (RL) agent as a Question Answering (QA) model. This method increases the classification confidence and accuracy of the visual symptom checker, and decreases the average number of questions asked to narrow down the differential diagnosis. A Deep Q-Network (DQN)-based RL agent learns how to ask the patient about the presence of symptoms in order to maximize the probability of correctly identifying the underlying condition. The RL agent uses the visual information provided by CNN in addition to the answers to the asked questions to guide the QA system. We demonstrate that the RL-based approach increases the accuracy more than 20% compared to the CNN-only approach, which only uses the visual information to predict the condition. Moreover, the increased accuracy is up to 10% compared to the approach that uses the visual information provided by CNN along with a conventional decision tree-based QA system. We finally show that the RL-based approach not only outperforms the decision tree-based approach, but also narrows down the diagnosis faster in terms of the average number of asked questions.Comment: Accepted for the Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI) 201

    Probabilistic inference for determining options in reinforcement learning

    Get PDF
    Tasks that require many sequential decisions or complex solutions are hard to solve using conventional reinforcement learning algorithms. Based on the semi Markov decision process setting (SMDP) and the option framework, we propose a model which aims to alleviate these concerns. Instead of learning a single monolithic policy, the agent learns a set of simpler sub-policies as well as the initiation and termination probabilities for each of those sub-policies. While existing option learning algorithms frequently require manual specification of components such as the sub-policies, we present an algorithm which infers all relevant components of the option framework from data. Furthermore, the proposed approach is based on parametric option representations and works well in combination with current policy search methods, which are particularly well suited for continuous real-world tasks. We present results on SMDPs with discrete as well as continuous state-action spaces. The results show that the presented algorithm can combine simple sub-policies to solve complex tasks and can improve learning performance on simpler tasks

    Dynamic programming with approximation function for nurse scheduling

    Get PDF
    Although dynamic programming could ideally solve any combinatorial optimization problem, the curse of dimensionality of the search space seriously limits its application to large optimization problems. For example, only few papers in the literature have reported the application of dynamic programming to workforce scheduling problems. This paper investigates approximate dynamic programming to tackle nurse scheduling problems of size that dynamic programming cannot tackle in practice. Nurse scheduling is one of the problems within workforce scheduling that has been tackled with a considerable number of algorithms particularly meta-heuristics. Experimental results indicate that approximate dynamic programming is a suitable method to solve this problem effectively

    Dimension reduction for systems with slow relaxation

    Full text link
    We develop reduced, stochastic models for high dimensional, dissipative dynamical systems that relax very slowly to equilibrium and can encode long term memory. We present a variety of empirical and first principles approaches for model reduction, and build a mathematical framework for analyzing the reduced models. We introduce the notions of universal and asymptotic filters to characterize `optimal' model reductions for sloppy linear models. We illustrate our methods by applying them to the practically important problem of modeling evaporation in oil spills.Comment: 48 Pages, 13 figures. Paper dedicated to the memory of Leo Kadanof

    B Cells Regulate Neutrophilia during Mycobacterium tuberculosis Infection and BCG Vaccination by Modulating the Interleukin-17 Response

    Get PDF
    We have previously demonstrated that B cells can shape the immune response to Mycobacterium tuberculosis, including the level of neutrophil infiltration and granulomatous inflammation at the site of infection. The present study examined the mechanisms by which B cells regulate the host neutrophilic response upon exposure to mycobacteria and how neutrophilia may influence vaccine efficacy. To address these questions, a murine aerosol infection tuberculosis (TB) model and an intradermal (ID) ear BCG immunization mouse model, involving both the μMT strain and B cell-depleted C57BL/6 mice, were used. IL (interleukin)-17 neutralization and neutrophil depletion experiments using these systems provide evidence that B cells can regulate neutrophilia by modulating the IL-17 response during M. tuberculosis infection and BCG immunization. Exuberant neutrophilia at the site of immunization in B cell-deficient mice adversely affects dendritic cell (DC) migration to the draining lymph nodes and attenuates the development of the vaccine-induced Th1 response. The results suggest that B cells are required for the development of optimal protective anti-TB immunity upon BCG vaccination by regulating the IL-17/neutrophilic response. Administration of sera derived from M. tuberculosis-infected C57BL/6 wild-type mice reverses the lung neutrophilia phenotype in tuberculous μMT mice. Together, these observations provide insight into the mechanisms by which B cells and humoral immunity modulate vaccine-induced Th1 response and regulate neutrophila during M. tuberculosis infection and BCG immunization. © 2013 Kozakiewicz et al

    Behavioral determinants as predictors of return to work after long-term sickness absence: an application of the theory of planned behavior

    Get PDF
    Background The aim of this prospective, longitudinal cohort study was to analyze the association between the three behavioral determinants of the theory of planned behavior (TPB) model-attitude, subjective norm and self-efficacy-and the time to return-to-work (RTW) in employees on long-term sick leave. Methods The study was based on a sample of 926 employees on sickness absence (maximum duration of 12 weeks). The employees filled out a baseline questionnaire and were subsequently followed until the tenth month after listing sick. The TPB-determinants were measured at baseline. Work attitude was measured with a Dutch language version of the Work Involvement Scale. Subjective norm was measured with a self-structured scale reflecting a person's perception of social support and social pressure. Self-efficacy was measured with the three subscales of a standardised Dutch version of the general self-efficacy scale (ALCOS): willingness to expend effort in completing the behavior, persistence in the face of adversity, and willingness to initiate behavior. Cox proportional hazards regression analyses were used to identify behavioral determinants of the time to RTW. Results Median time to RTW was 160 days. In the univariate analysis, all potential prognostic factors were significantly associated (P < 0.15) with time to RTW: work attitude, social support, and the three subscales of self-efficacy. The final multivariate model with time to RTW as the predicted outcome included work attitude, social support and willingness to expend effort in completing the behavior as significant predictive factors. Conclusions This prospective, longitudinal cohort-study showed that work attitude, social support and willingness to expend effort in completing the behavior are significantly associated with a shorter time to RTW in employees on long-term sickness absence. This provides suggestive evidence for the relevance of behavioral characteristics in the prediction of duration of sickness absence. It may be a promising approach to address the behavioral determinants in the development of interventions focusing on RTW in employees on long-term sick leave

    Measurement of the production of a W boson in association with a charm quark in pp collisions at √s = 7 TeV with the ATLAS detector

    Get PDF
    The production of a W boson in association with a single charm quark is studied using 4.6 fb−1 of pp collision data at s√ = 7 TeV collected with the ATLAS detector at the Large Hadron Collider. In events in which a W boson decays to an electron or muon, the charm quark is tagged either by its semileptonic decay to a muon or by the presence of a charmed meson. The integrated and differential cross sections as a function of the pseudorapidity of the lepton from the W-boson decay are measured. Results are compared to the predictions of next-to-leading-order QCD calculations obtained from various parton distribution function parameterisations. The ratio of the strange-to-down sea-quark distributions is determined to be 0.96+0.26−0.30 at Q 2 = 1.9 GeV2, which supports the hypothesis of an SU(3)-symmetric composition of the light-quark sea. Additionally, the cross-section ratio σ(W + +c¯¯)/σ(W − + c) is compared to the predictions obtained using parton distribution function parameterisations with different assumptions about the s−s¯¯¯ quark asymmetry

    Measurement of the inclusive and dijet cross-sections of b-jets in pp collisions at sqrt(s) = 7 TeV with the ATLAS detector

    Get PDF
    The inclusive and dijet production cross-sections have been measured for jets containing b-hadrons (b-jets) in proton-proton collisions at a centre-of-mass energy of sqrt(s) = 7 TeV, using the ATLAS detector at the LHC. The measurements use data corresponding to an integrated luminosity of 34 pb^-1. The b-jets are identified using either a lifetime-based method, where secondary decay vertices of b-hadrons in jets are reconstructed using information from the tracking detectors, or a muon-based method where the presence of a muon is used to identify semileptonic decays of b-hadrons inside jets. The inclusive b-jet cross-section is measured as a function of transverse momentum in the range 20 < pT < 400 GeV and rapidity in the range |y| < 2.1. The bbbar-dijet cross-section is measured as a function of the dijet invariant mass in the range 110 < m_jj < 760 GeV, the azimuthal angle difference between the two jets and the angular variable chi in two dijet mass regions. The results are compared with next-to-leading-order QCD predictions. Good agreement is observed between the measured cross-sections and the predictions obtained using POWHEG + Pythia. MC@NLO + Herwig shows good agreement with the measured bbbar-dijet cross-section. However, it does not reproduce the measured inclusive cross-section well, particularly for central b-jets with large transverse momenta.Comment: 10 pages plus author list (21 pages total), 8 figures, 1 table, final version published in European Physical Journal

    Search for squarks and gluinos with the ATLAS detector in final states with jets and missing transverse momentum using √s=8 TeV proton-proton collision data

    Get PDF
    A search for squarks and gluinos in final states containing high-p T jets, missing transverse momentum and no electrons or muons is presented. The data were recorded in 2012 by the ATLAS experiment in s√=8 TeV proton-proton collisions at the Large Hadron Collider, with a total integrated luminosity of 20.3 fb−1. Results are interpreted in a variety of simplified and specific supersymmetry-breaking models assuming that R-parity is conserved and that the lightest neutralino is the lightest supersymmetric particle. An exclusion limit at the 95% confidence level on the mass of the gluino is set at 1330 GeV for a simplified model incorporating only a gluino and the lightest neutralino. For a simplified model involving the strong production of first- and second-generation squarks, squark masses below 850 GeV (440 GeV) are excluded for a massless lightest neutralino, assuming mass degenerate (single light-flavour) squarks. In mSUGRA/CMSSM models with tan β = 30, A 0 = −2m 0 and μ > 0, squarks and gluinos of equal mass are excluded for masses below 1700 GeV. Additional limits are set for non-universal Higgs mass models with gaugino mediation and for simplified models involving the pair production of gluinos, each decaying to a top squark and a top quark, with the top squark decaying to a charm quark and a neutralino. These limits extend the region of supersymmetric parameter space excluded by previous searches with the ATLAS detector
    corecore