43 research outputs found
Discovery of the lensed quasar system DES J0408-5354
We report the discovery and spectroscopic confirmation of the quad-like lensed quasar system DES J0408-5354 found in the Dark Energy Survey (DES) Year 1 (Y1) data. This system was discovered during a search for DES Y1 strong lensing systems using a method that identified candidates as red galaxies with multiple blue neighbors. DES J0408-5354 consists of a central red galaxy surrounded by three bright (i<20) blue objects and a fourth red object. Subsequent spectroscopic observations using the Gemini South telescope confirmed that the three blue objects are indeed the lensed images of a quasar with redshift z = 2.375, and that the central red object is an early-type lensing galaxy with redshift z = 0.597. DES J0408-5354 is the first quad lensed quasar system to be found in DES and begins to demonstrate the potential of DES to discover and dramatically increase the sample size of these very rare objects
Is every strong lens model unhappy in its own way? Uniform modelling of a sample of 13 quadruply+ imaged quasars
Strong-gravitational lens systems with quadruply imaged quasars (quads) are unique probes to address several fundamental problems in cosmology and astrophysics. Although they are intrinsically very rare, ongoing and planned wide-field deep-sky surveys are set to discover thousands of such systems in the next decade. It is thus paramount to devise a general framework to model strong-lens systems to cope with this large influx without being limited by expert investigator time. We propose such a general modelling framework (implemented with the publicly available software LENSTRONOMY) and apply it to uniformly model three-band Hubble Space Telescope Wide Field Camera 3 images of 13 quads. This is the largest uniformly modelled sample of quads to date and paves the way for a variety of studies. To illustrate the scientific content of the sample, we investigate the alignment between the mass and light distribution in the deflectors. The position angles of these distributions are well-aligned, except when there is strong external shear. However, we find no correlation between the ellipticity of the light and mass distributions. We also show that the observed flux-ratios between the images depart significantly from the predictions of simple smooth models. The departures are strongest in the bluest band, consistent with microlensing being the dominant cause in addition to millilensing. Future papers will exploit this rich data set in combination with ground-based spectroscopy and time delays to determine quantities such as the Hubble constant, the free streaming length of dark matter, and the normalization of the initial stellar mass function
The STRong lensing Insights into the Dark Energy Survey (STRIDES) 2016 follow-up campaign - I. Overview and classification of candidates selected by two techniques
The primary goals of the STRong lensing Insights into the Dark Energy Survey
(STRIDES) collaboration are to measure the dark energy equation of state
parameter and the free streaming length of dark matter. To this aim, STRIDES is
discovering strongly lensed quasars in the imaging data of the Dark Energy
Survey and following them up to measure time delays, high resolution imaging,
and spectroscopy sufficient to construct accurate lens models. In this paper,
we first present forecasts for STRIDES. Then, we describe the STRIDES
classification scheme, and give an overview of the Fall 2016 follow-up
campaign. We continue by detailing the results of two selection methods, the
Outlier Selection Technique and a morphological algorithm, and presenting lens
models of a system, which could possibly be a lensed quasar in an unusual
configuration. We conclude with the summary statistics of the Fall 2016
campaign. Including searches presented in companion papers (Anguita et al.;
Ostrovski et al.), STRIDES followed up 117 targets identifying 7 new strongly
lensed systems, and 7 nearly identical quasars (NIQs), which could be confirmed
as lenses by the detection of the lens galaxy. 76 candidates were rejected and
27 remain otherwise inconclusive, for a success rate in the range 6-35\%. This
rate is comparable to that of previous searches like SQLS even though the
parent dataset of STRIDES is purely photometric and our selection of candidates
cannot rely on spectroscopic information
<em>Euclid</em>: Searches for strong gravitational lenses using convolutional neural nets in Early Release Observations of the Perseus field
\ua9 The Authors 2025.The Euclid Wide Survey (EWS) is predicted to find approximately 170 000 galaxy-galaxy strong lenses from its lifetime observation of 14 000 deg2 of the sky. Detecting this many lenses by visual inspection with professional astronomers and citizen scientists alone is infeasible. As a result, machine learning algorithms, particularly convolutional neural networks (CNNs), have been used as an automated method of detecting strong lenses, and have proven fruitful in finding galaxy-galaxy strong lens candidates, such that the usage of CNNs in lens identification has increased. We identify the major challenge to be the automatic detection of galaxy-galaxy strong lenses while simultaneously maintaining a low false positive rate, thus producing a pure and complete sample of strong lens candidates from Euclid with a limited need for visual inspection. One aim of this research is to have a quantified starting point on the achieved purity and completeness with our current version of CNN-based detection pipelines for the VIS images of EWS. This work is vital in preparing our CNN-based detection pipelines to be able to produce a pure sample of the >100 000 strong gravitational lensing systems widely predicted for Euclid. We select all sources with VIS IE < 23 mag from the Euclid Early Release Observation imaging of the Perseus field. We apply a range of CNN architectures to detect strong lenses in these cutouts. All our networks perform extremely well on simulated data sets and their respective validation sets. However, when applied to real Euclid imaging, the highest lens purity is just ∼11%. Among all our networks, the false positives are typically identifiable by human volunteers as, for example, spiral galaxies, multiple sources, and artifacts, implying that improvements are still possible, perhaps via a second, more interpretable lens selection filtering stage. There is currently no alternative to human classification of CNN-selected lens candidates. Given the expected ∼105 lensing systems in Euclid, this implies 106 objects for human classification, which while very large is not in principle intractable and not without precedent
<em>Euclid</em>: The Early Release Observations Lens Search Experiment
\ua9 The Authors 2025. We investigated the ability of the Euclid telescope to detect galaxy-scale gravitational lenses. To do so, we performed a systematic visual inspection of the 0.7 deg2 Euclid Early Release Observations data towards the Perseus cluster using both the high-resolution IE band and the lower-resolution YE, JE, and HE bands. Each extended source brighter than magnitude 23 in IE was inspected by 41 expert human classifiers. This amounts to 12 086 stamps of 1000
7 1000. We found 3 grade A and 13 grade B candidates. We assessed the validity of these 16 candidates by modelling them and checking that they are consistent with a single source lensed by a plausible mass distribution. Five of the candidates pass this check, five others are rejected by the modelling, and six are inconclusive. Extrapolating from the five successfully modelled candidates, we infer that the full 14 000 deg2 of the Euclid Wide Survey should contain 100 000+-7030000000 galaxy-galaxy lenses that are both discoverable through visual inspection and have valid lens models. This is consistent with theoretical forecasts of 170 000 discoverable galaxy-galaxy lenses in Euclid. Our five modelled lenses have Einstein radii in the range 000 . 68 < θE < 100 . 24, but their Einstein radius distribution is on the higher side when compared to theoretical forecasts. This suggests that our methodology is likely missing small-Einstein-radius systems. Whilst it is implausible to visually inspect the full Euclid dataset, our results corroborate the promise that Euclid will ultimately deliver a sample of around 105 galaxy-scale lenses
JWST Photometric Time-delay and Magnification Measurements for the Triply Imaged Type Ia “SN H0pe” at z = 1.78
Supernova (SN) SN H0pe is a gravitationally lensed, triply imaged, Type Ia SN (SN Ia) discovered in James Webb Space Telescope imaging of the PLCK G165.7+67.0 cluster of galaxies. Well-observed multiply imaged SNe provide a rare opportunity to constrain the Hubble constant (H 0), by measuring the relative time delay between the images and modeling the foreground mass distribution. SN H0pe is located at z = 1.783 and is the first SN Ia with sufficient light-curve sampling and long enough time delays for an H 0 inference. Here we present photometric time-delay measurements and SN properties of SN H0pe. Using JWST/NIRCam photometry, we measure time delays of Δt ab = − 116.6 − 9.3 + 10.8 observer-frame days and Δt cb = − 48.6 − 4.0 + 3.6 observer-frame days relative to the last image to arrive (image 2b; all uncertainties are 1σ), which corresponds to a ∼5.6% uncertainty contribution for H 0 assuming 70 km s−1 Mpc−1. We also constrain the absolute magnification of each image to μ a = 4.3 − 1.8 + 1.6 , μ b = 7.6 − 2.6 + 3.6 , μ c = 6.4 − 1.5 + 1.6 by comparing the observed peak near-IR magnitude of SN H0pe to the nonlensed population of SNe Ia
LensWatch. I. Resolved HST Observations and Constraints on the Strongly Lensed Type Ia Supernova 2022qmx (“SN Zwicky”)
Supernovae (SNe) that have been multiply imaged by gravitational lensing are rare and powerful probes for cosmology. Each detection is an opportunity to develop the critical tools and methodologies needed as the sample of lensed SNe increases by orders of magnitude with the upcoming Vera C. Rubin Observatory and Nancy Grace Roman Space Telescope. The latest such discovery is of the quadruply imaged Type Ia SN 2022qmx (aka, “SN Zwicky”) at z = 0.3544. SN Zwicky was discovered by the Zwicky Transient Facility in spatially unresolved data. Here we present follow-up Hubble Space Telescope observations of SN Zwicky, the first from the multicycle “LensWatch (www.lenswatch.org)” program. We measure photometry for each of the four images of SN Zwicky, which are resolved in three WFC3/UVIS filters (F475W, F625W, and F814W) but unresolved with WFC3/IR F160W, and present an analysis of the lensing system using a variety of independent lens modeling methods. We find consistency between lens-model-predicted time delays (≲1 day), and delays estimated with the single epoch of Hubble Space Telescope colors (≲3.5 days), including the uncertainty from chromatic microlensing (∼1-1.5 days). Our lens models converge to an Einstein radius of θ E = ( 0.168 − 0.005 + 0.009 ) ″ , the smallest yet seen in a lensed SN system. The “standard candle” nature of SN Zwicky provides magnification estimates independent of the lens modeling that are brighter than predicted by ∼ 1.7 − 0.6 + 0.8 mag and ∼ 0.9 − 0.6 + 0.8 mag for two of the four images, suggesting significant microlensing and/or additional substructure beyond the flexibility of our image-position mass models
COSMOGRAIL: the COSmological MOnitoring of GRAvItational Lenses: XII. Time delays of the doubly lensed quasars SDSS~J1206+4332 and HS~2209+1914
Aims. Within the framework of the COSMOGRAIL collaboration we present 7- and 8.5-year-long light curves and time-delay esti- mates for two gravitationally lensed quasars: SDSS J1206+4332 and HS 2209+1914. Methods. We monitored these doubly lensed quasars in the R-band using four telescopes: the Mercator, Maidanak, Himalayan Chandra, and Euler Telescopes, together spanning a period of 7 to 8.5 observing seasons from mid-2004 to mid-2011. The pho- tometry of the quasar images was obtained through simultaneous deconvolution of these data. The time delays were determined from these resulting light curves using four very different techniques: a dispersion method, a spline fit, a regression difference technique, and a numerical model fit. This minimizes the bias that might be introduced by the use of a single method.
Results. The time delay for SDSS J1206+4332 is ∆tAB = 111.3 ± 3 days with A leading B, confirming a previously published result within the error bars. For HS 2209+1914 we present a new time delay of ∆tBA = 20.0 ± 5 days with B leading A. Conclusions. The combination of data from up to four telescopes have led to well-sampled and nearly 9-season-long light curves, which were necessary to obtain these results, especially for the compact doubly lensed quasar HS 2209+1914
On the Accuracy of Time-delay Cosmography in the Frontier Fields Cluster MACS J1149.5+2223 with Supernova Refsdal
We study possible systematic effects on the values of the cosmological parameters measured through strong lensing analyses of the Hubble Frontier Field galaxy cluster MACS J1149.5+2223. We use the observed positions of a large set of spectroscopically selected multiple images, including those of supernova "Refsdal" with their published time delays. Starting from our reference model in a flat ?CDM cosmology, published in Grillo et al. (2018), we confirm the relevance of the longest measurable time delay, between SX and S1, and an approximately linear relation between its value and that ofH(0). We perform true blind tests by considering a range of time delays around its original estimate of 345 10 days, as an accurate measurement of this time delay is still not known at the time of analysis and writing. We investigate separately the impact of a constant sheet of mass at the cluster redshift, of a power-law profile for the mass density of the cluster main halo and of some scatter in the cluster member scaling relations. Remarkably, we find that these systematic effects do not introduce a significant bias on the inferred values ofH(0)and omega(m)and that the statistical uncertainties dominate the total error budget: a 3% uncertainty on the time delay of image SX translates into approximately 6% and 40% (including both statistical and systematic 1 sigma) uncertainties forH(0)and omega(m), respectively. Furthermore, our model accurately reproduces the extended surface brightness distribution of the supernova host. We also present the interesting possibility of measuring the value of the equation-of-state parameterwof the dark energy density, currently with a 30% uncertainty
