53,413 research outputs found

    Structure of the breakpoint region in CVC of the intrinsic Josephson junctions

    Get PDF
    A fine structure of the breakpoint region in the current-voltage characteristics of the coupled intrinsic Josephson junctions in the layered superconductors is found. We establish a correspondence between the features in the current-voltage characteristics and the character of the charge oscillations in superconducting layers in the stack and explain the origin of the breakpoint region structure.Comment: 5 pages, 5 figures. Accepted for Phys.Rev.

    A New Gauge Fixing Method for Abelian Projection

    Get PDF
    We formulate a stochastic gauge fixing method to study the gauge dependence of the Abelian projection. We consider a gauge which interpolates between the maximal Abelian gauge and no gauge fixing. We have found that Abelian dominance for the heavy quark potential holds even in a gauge which is far from maximally Abelian one. The heavy quark potentials from monopole and photon contribution are calculated at several values of the gauge parameter, and the former part shows always the confinement behavior.Comment: 9 pages, 6 Postscript figures, uses epsfig.st

    Supersolid of Hardcore Bosons on the Face Centered Cubic Lattice

    Full text link
    We investigate a supersolid state in hardcore boson models on the face-centered-cubic (FCC) lattice. The supersolid state is characterized by a coexistence of crystalline order and superfluidity. Using a quantum Monte Carlo method based on the directed-loop algorithm, we calculate static structure factors and superfluid density at finite temperature, from which we obtain the phase diagram. The supersolid phase exists at intermediate fillings between a three-quarter-filled solid phase and a half-filled solid phase. We also discuss the mechanism of the supersolid state on the FCC lattice.Comment: 5pages, 6figure

    Kosterlitz-Thouless Phase Transition of the ANNNI model in Two Dimensions

    Get PDF
    The spin structure of an axial next-nearest-neighbor Ising (ANNNI) model in two dimensions (2D) is a renewed problem because different Monte Carlo (MC) simulation methods predicted different spin orderings. The usual equilibrium simulation predicts the occurrence of a floating incommensurate (IC) Kosterlitz-Thouless (KT) type phase, which never emerges in non-equilibrium relaxation (NER) simulations. In this paper, we first examine previously published results of both methods, and then investigate a higher transition temperature, Tc1T_{c1}, between the IC and paramagnetic phases. In the usual equilibrium simulation, we calculate the layer magnetization on larger lattices (up to 512×512512 \times 512 sites) and estimate Tc11.16JT_{c1} \approx 1.16J with frustration ratio κ(J2/J1)=0.6\kappa (\equiv -J_2/J_1) = 0.6. We examine the nature of the phase transition in terms of the Binder ratio gLg_L of spin overlap functions and the correlation-length ratio ξ/L\xi/L. In the NER simulation, we observe the spin dynamics in equilibrium states by means of an autocorrelation function, and also observe the layer magnetization relaxations from the ground and disordered states. These quantities exhibit an algebraic decay at T1.17JT \lesssim 1.17J. We conclude that the two-dimensional ANNNI model actually admits an IC phase transition of the KT type.Comment: 20 pages, 16 figure

    Open-charm meson spectroscopy

    Get PDF
    We present a theoretical framework that accounts for the new DJD_J and DsJD_{sJ} mesons measured in the open-charm sector. These resonances are properly described if considered as a mixture of conventional PP-wave quark-antiquark states and four-quark components. The narrowest states are basically PP-wave quark-antiquark mesons, while the dominantly four-quark states are shifted above the corresponding two-meson threshold, being broad resonances. We study the electromagnetic decay widths as basic tools to scrutiny their nature. The proposed explanation incorporates in a natural way the most recently discovered mesons in charmonium spectroscopy.Comment: 15 pages, 5 tables. Accepted for publication in Phys. Rev.

    A requirement for PARP-1 for the assembly or stability of XRCC1 nuclear foci at sites of oxidative DNA damage

    Get PDF
    The molecular role of poly (ADP-ribose) polymerase-1 in DNA repair is unclear. Here, we show that the single-strand break repair protein XRCC1 is rapidly assembled into discrete nuclear foci after oxidative DNA damage at sites of poly (ADP-ribose) synthesis. Poly (ADP-ribose) synthesis peaks during a 10 min treatment with H2O2 and the appearance of XRCC1 foci peaks shortly afterwards. Both sites of poly (ADP-ribose) and XRCC1 foci decrease to background levels during subsequent incubation in drug-free medium, consistent with the rapidity of the single-strand break repair process. The formation of XRCC1 foci at sites of poly (ADP-ribose) was greatly reduced by mutation of the XRCC1 BRCT I domain that physically interacts with PARP-1. Moreover, we failed to detect XRCC1 foci in Adprt1¿/¿ MEFs after treatment with H2O2. These data demonstrate that PARP-1 is required for the assembly or stability of XRCC1 nuclear foci after oxidative DNA damage and suggest that the formation of these foci is mediated via interaction with poly (ADP-ribose). These results support a model in which the rapid activation of PARP-1 at sites of DNA strand breakage facilitates DNA repair by recruiting the molecular scaffold protein, XRCC1

    Experimental evaluation of non-classical correlations between measurement outcomes and target observable in a quantum measurement

    Full text link
    In general, it is difficult to evaluate measurement errors when the initial and final conditions of the measurement make it impossible to identify the correct value of the target observable. Ozawa proposed a solution based on the operator algebra of observables which has recently been used in experiments investigating the error-disturbance trade-off of quantum measurements. Importantly, this solution makes surprisingly detailed statements about the relations between measurement outcomes and the unknown target observable. In the present paper, we investigate this relation by performing a sequence of two measurements on the polarization of a photon, so that the first measurement commutes with the target observable and the second measurement is sensitive to a complementary observable. While the initial measurement can be evaluated using classical statistics, the second measurement introduces the effects of quantum correlations between the non-commuting physical properties. By varying the resolution of the initial measurement, we can change the relative contribution of the non-classical correlations and identify their role in the evaluation of the quantum measurement. It is shown that the most striking deviation from classical expectations is obtained at the transition between weak and strong measurements, where the competition between different statistical effects results in measurement values well outside the range of possible eigenvalues.Comment: 11 pages, 6 figures, small corrections to setup figur

    Effect of random disorder and spin frustration on the reentrant spin glass phase and ferromagnetic phase in stage-2 Cu_{0.93}Co_{0.07}Cl_{2} graphite intercalation compound near the multicritical point

    Full text link
    Stage-2 Cu0.93_{0.93}Co0.07_{0.07}Cl2_{2} graphite intercalation compound magnetically behaves like a reentrant ferromagnet near the multicritical point (cMCP0.96c_{MCP} \approx 0.96). It undergoes two magnetic phase transitions at TRSGT_{RSG} (=6.64±0.05= 6.64 \pm 0.05 K) and TcT_{c} (=8.62±0.05= 8.62 \pm 0.05 K). The static and dynamic nature of the ferromagnetic and reentrant spin glass phase has been studied using DC and AC magnetic susceptibility. Characteristic memory phenomena of the DC susceptibility are observed at TRSGT_{RSG} and TcT_{c}. The nonlinear AC susceptibility χ3\chi_{3}^{\prime} has a positive local maximum at TRSGT_{RSG}, and a negative local minimum at TcT_{c}. The relaxation time τ\tau between TRSGT_{RSG} and TcT_{c} shows a critical slowing down: τ\tau with x=13.1±0.4x = 13.1 \pm 0.4 and τ0=(2.5±0.5)×1013\tau_{0}^{*} = (2.5 \pm 0.5) \times 10^{-13} sec. The influence of the random disorder on the critical behavior above TcT_{c} is clearly observed: α=0.66\alpha = -0.66, β=0.63\beta = 0.63, and γ=1.40\gamma = 1.40. The exponent of α\alpha is far from that of 3D Heisenberg model.Comment: 15 pages, 16 figures, submitted to Phys. Rev.
    corecore