83,606 research outputs found
Recent trends and theoretical background in sintering of silicon carbide ceramics
This article gives an outline of sintering techniques of silicon carbide and refers to recent developments. These techniques are also applicable to other oxides with a high melting point and particularly high sinterability, namely MgO and BeO
Isoscalar and Isovector spin response in shell nuclei
The spin magnetic dipole transitions and the neutron-proton spin-spin
correlations in shell even-even nuclei with are investigated using
shell model wave functions taking into accout enhanced isoscalar (IS)
spin-triplet pairing as well as the effective spin operators. It was shown that
the IS pairing and the effective spin operators gives a large quenching effect
on the IV spin transitions to be consistent with observed data by
experiments. On the other hand, the observed IS spin strength show much smaller
quenching effect than expected by the calculated results. The IS pairing gives
a substantial quenching effect on the spin magnetic dipole transitions,
especially on the isovector (IV) ones. Consequently, an enhanced isoscalar
spin-triplet pairing interaction enlarges the proton-neutron spin-spin
correlation deduced from the difference between the isoscalar (IS) and the IV
sum rule strengths. The beta-decay rates and the IS magnetic moments of
shell are also examined in terms of the IS pairing as well as the
effective spin operators.Comment: 13pages, 12figures, 3tables. arXiv admin note: text overlap with
arXiv:1607.0588
Field-induced magnetic ordering in the Haldane system PbNi2V2O8
The Haldane system PbNi2V2O8 was investigated by the temperature dependent
magnetization M(T) measurements at fields higher than H_c, with H_c the
critical fields necessary to close the Haldane gap. It is revealed that M(T)
for H > H_c exhibits a cusp-like minimum at T_{min}, below which M(T) increases
with decreasing T having a convex curve. These features have been observed for
both and , with c-axis being parallel to the chain.
These data indicate the occurrence of field-induced magnetic ordering around
T_{min}. Phase boundaries for and do not cross each
other, consistent with the theoretical calculation for negative single-ion
anisotropy D.Comment: 3 figures, submitted to Phys. Rev.
QCD Phase Transition at Finite Temperature in the Dual Ginzburg-Landau Theory
We study the pure-gauge QCD phase transition at finite temperatures in the
dual Ginzburg-Landau theory, an effective theory of QCD based on the dual Higgs
mechanism. We formulate the effective potential at various temperatures by
introducing the quadratic source term, which is a new useful method to obtain
the effective potential in the negative-curvature region. Thermal effects
reduce the QCD-monopole condensate and bring a first-order deconfinement phase
transition. We find a large reduction of the self-interaction among
QCD-monopoles and the glueball masses near the critical temperature by
considering the temperature dependence of the self-interaction. We also
calculate the string tension at finite temperatures.Comment: 13 pages, uses PHYZZX ( 5 figures - available on request from
[email protected]
Topological Charge of Lattice Abelian Gauge Theory
Configuration space of abelian gauge theory on a periodic lattice becomes
topologically disconnected by excising exceptional gauge field configurations.
It is possible to define a U(1) bundle from the nonexceptional link variables
by a smooth interpolation of the transition functions. The lattice analogue of
Chern character obtained by a cohomological technique based on the
noncommutative differential calculus is shown to give a topological charge
related to the topological winding number of the U(1) bundle.Comment: 20 pages, latex, nofigur
Observation of EAS using a large water tank
Using a large water tank (30 m in diameter, 4.5 m in depth) transition of extensive air showers (EAS) was investigated at Taro (200 m above sea level). There are set 150,0.4 sq m proportional counters on the bottom of the water tank. A conventional EAS array of 25 plastic scintillation detectors was arranged within several tens meter from the water tank. A proportional counter (10x10x200 cc x2) is made of a square shaped pipe of iron. Tungsten wire (100 mu m phi) is stretched tight in the center of the counter. A gas mixture of 90% argon and 10% methane is used at 760 mmHg. About 3000 EAS were obtained through 1 m of water since 1984
Initial aging phenomena in copper-chromium alloys
The effects of quenching and aging temperatures on the initial aging curves of Cu-Cr alloy were examined mainly by means of electrical resistivity measurements. Three Cu-Cr alloy specimens having 0.24, 0.74, and 1.0% Cr were solution-treated at 950-1050 C, quenched into ice-water, and subsequently aged at 300-500 C. The results were as follows: (1) At the very early stage of aging (within about 30 sec), an abrupt decrease of resistivity with lowering aging tempratures. (T sub A) and rising solution temperatures (T sub S) was observed at (T sub A) up to about 400 C. In contrast, a transient increase of resistivity with rising T sub A and lowering T sub S was observed at T sub A from about 450 to 500 C. These phenomena seem to be caused by a rapid formation of solute clusters and the reversion of clusters formed during quenching, which are enhanced by quenched-in vacancies, respectively. (2) The amount of precipitation increased at the latter stage of aging with rising T sub S and T sub A as generally expected, where T sub S was not so high as to form secondary defects. (3) As a result, the initial aging phenomena in Cr-Cr alloy were revealed to be complicated against expectations. This was considered to be due to the migration energy of vacancies so larger in Cu-base
- …
