9,365 research outputs found

    Trends and challenges in VLSI technology scaling towards 100 nm

    Get PDF
    Summary form only given. Moore's Law drives VLSI technology to continuous increases in transistor densities and higher clock frequencies. This tutorial will review the trends in VLSI technology scaling in the last few years and discuss the challenges facing process and circuit engineers in the 100nm generation and beyond. The first focus area is the process technology, including transistor scaling trends and research activities for the 100nm technology node and beyond. The transistor leakage and interconnect RC delays will continue to increase. The tutorial will review new circuit design techniques for emerging process technologies, including dual Vt transistors and silicon-on-insulator. It will also cover circuit and layout techniques to reduce clock distribution skew and jitter, model and reduce transistor leakage and improve the electrical performance of flip-chip packages. Finally, the tutorial will review the test challenges for the 100nm technology node due to increased clock frequency and power consumption (both active and passive) and present several potential solution

    Search for Non-Triggered Gamma Ray Bursts in the BATSE Continuous Records: Preliminary Results

    Get PDF
    We present preliminary results of an off-line search for non-triggered gamma-ray bursts (GRBs) in the BATSE daily records for about 5.7 years of observations. We found more GRB-like events than the yield of the similar search of Kommers et al. (1998) and extended the Log N - log P distribution down to \sim 0.1 ph cm2^{-2} s1^{-1}. The indication of a turnover of the log N - log P at a small P is not confirmed: the distribution is straight at 1.5 decades with the power law index -.6 and cannot be fitted with a standard candle cosmological model.Comment: 4 pages, LaTeX, to appear in Proceedings "Gamma Ray Bursts in the Afterglow Era", Rome, November 1998, A&AS, 199

    Journal Staff

    Get PDF
    The aluminum–zinc-vacancy (Al Zn −V Zn ) complex is identified as one of the dominant defects in Al-containing n -type ZnO after electron irradiation at room temperature with energies above 0.8 MeV. The complex is energetically favorable over the isolated V Zn , binding more than 90% of the stable V Zn ’s generated by the irradiation. It acts as a deep acceptor with the (0/− ) energy level located at approximately 1 eV above the valence band. Such a complex is concluded to be a defect of crucial and general importance that limits the n -type doping efficiency by complex formation with donors, thereby literally removing the donors, as well as by charge compensation

    Zn vacancy-donor impurity complexes in ZnO

    Full text link
    Results from hybrid density functional theory calculations on the thermodynamic stability and optical properties of the Zn vacancy (VZnV_{\text{Zn}}) complexed with common donor impurities in ZnO are reported. Complexing VZnV_{\text{Zn}} with donors successively removes its charge-state transition levels in the band gap, starting from the most negative one. Interestingly, the presence of a donor leads only to modest shifts in the positions of the VZnV_{\text{Zn}} charge-state transition levels, the sign and magnitude of which can be interpreted from a polaron energetics model by taking hole-donor repulsion into account. By employing a one-dimensional configuration coordinate model, luminescence lineshapes and positions were calculated. Due to the aforementioned effects, the isolated VZnV_{\text{Zn}} gradually changes from a mainly non-radiative defect with transitions in the infrared region in \textit{n}-type material, to a radiative one with broad emission in the visible range when complexed with shallow donors.Comment: 9 pages, 5 figure

    Kinetics of electron-positron pair plasmas using an adaptive Monte Carlo method

    Get PDF
    A new algorithm for implementing the adaptive Monte Carlo method is given. It is used to solve the relativistic Boltzmann equations that describe the time evolution of a nonequilibrium electron-positron pair plasma containing high-energy photons and pairs. The collision kernels for the photons as well as pairs are constructed for Compton scattering, pair annihilation and creation, bremsstrahlung, and Bhabha & Moller scattering. For a homogeneous and isotropic plasma, analytical equilibrium solutions are obtained in terms of the initial conditions. For two non-equilibrium models, the time evolution of the photon and pair spectra is determined using the new method. The asymptotic numerical solutions are found to be in a good agreement with the analytical equilibrium states. Astrophysical applications of this scheme are discussed.Comment: 43 pages, 7 postscript figures, to appear in the Astrophysical Journa

    Self-Organized Criticality in Compact Plasmas

    Full text link
    Compact plasmas, that exist near black-hole candidates and in gamma ray burst sources, commonly exhibit self-organized non-linear behavior. A model that simulates the non-linear behavior of compact radiative plasmas is constructed directly from the observed luminosity and variability. The simulation shows that such plasmas self organize, and that the degree of non-linearity as well as the slope of the power density spectrum increase with compactness. The simulation is based on a cellular automaton table that includes the properties of the hot (relativistic) plasmas, and the magnitude of the energy perturbations. The plasmas cool or heat up, depending on whether they release more or less than the energy of a single perturbation. The energy release depends on the plasmas densities and temperatures, and the perturbations energy. Strong perturbations may cool the previously heated plasma through shocks and/or pair creation. New observations of some active galactic nuclei and gamma ray bursters are consistent with the simulationComment: 9 pages, 5 figures, AASTeX, Submitted to ApJ
    corecore