225 research outputs found

    A Depth-Optimal Canonical Form for Single-qubit Quantum Circuits

    Full text link
    Given an arbitrary single-qubit operation, an important task is to efficiently decompose this operation into an (exact or approximate) sequence of fault-tolerant quantum operations. We derive a depth-optimal canonical form for single-qubit quantum circuits, and the corresponding rules for exactly reducing an arbitrary single-qubit circuit to this canonical form. We focus on the single-qubit universal H,T basis due to its role in fault-tolerant quantum computing, and show how our formalism might be extended to other universal bases. We then extend our canonical representation to the family of Solovay-Kitaev decomposition algorithms, in order to find an \epsilon-approximation to the single-qubit circuit in polylogarithmic time. For a given single-qubit operation, we find significantly lower-depth \epsilon-approximation circuits than previous state-of-the-art implementations. In addition, the implementation of our algorithm requires significantly fewer resources, in terms of computation memory, than previous approaches.Comment: 10 pages, 3 figure

    A State Distillation Protocol to Implement Arbitrary Single-qubit Rotations

    Get PDF
    An important task required to build a scalable, fault-tolerant quantum computer is to efficiently represent an arbitrary single-qubit rotation by fault-tolerant quantum operations. Traditionally, the method for decomposing a single-qubit unitary into a discrete set of gates is Solovay-Kitaev decomposition, which in practice produces a sequence of depth O(\log^c(1/\epsilon)), where c~3.97 is the state-of-the-art. The proven lower bound is c=1, however an efficient algorithm that saturates this bound is unknown. In this paper, we present an alternative to Solovay-Kitaev decomposition employing state distillation techniques which reduces c to between 1.12 and 2.27, depending on the setting. For a given single-qubit rotation, our protocol significantly lowers the length of the approximating sequence and the number of required resource states (ancillary qubits). In addition, our protocol is robust to noise in the resource states.Comment: 10 pages, 18 figures, 5 table
    corecore