9,537 research outputs found
An analysis of short haul air passenger demand, volume 2
Several demand models for short haul air travel are proposed and calibrated on pooled data. The models are designed to predict demand and analyze some of the motivating phenomena behind demand generation. In particular, an attempt is made to include the effects of competing modes and of alternate destinations. The results support three conclusions: (1) the auto mode is the air mode's major competitor; (2) trip time is an overriding factor in intermodal competition, with air fare at its present level appearing unimportant to the typical short haul air traveler; and (3) distance appears to underly several demand generating phenomena, and therefore, must be considered very carefully to any intercity demand model. It may be the cause of the wide range of fare elasticities reported by researchers over the past 15 years. A behavioral demand model is proposed and calibrated. It combines the travel generating effects of income and population, the effects of modal split, the sensitivity of travel to price and time, and the effect of alternative destinations satisfying the trip purpose
Lattice-corrected strain-induced vector potentials in graphene
The electronic implications of strain in graphene can be captured at low
energies by means of pseudovector potentials which can give rise to
pseudomagnetic fields. These strain-induced vector potentials arise from the
local perturbation to the electronic hopping amplitudes in a tight-binding
framework. Here we complete the standard description of the strain-induced
vector potential, which accounts only for the hopping perturbation, with the
explicit inclusion of the lattice deformations or, equivalently, the
deformation of the Brillouin zone. These corrections are linear in strain and
are different at each of the strained, inequivalent Dirac points, and hence are
equally necessary to identify the precise magnitude of the vector potential.
This effect can be relevant in scenarios of inhomogeneous strain profiles,
where electronic motion depends on the amount of overlap among the local Fermi
surfaces. In particular, it affects the pseudomagnetic field distribution
induced by inhomogeneous strain configurations, and can lead to new
opportunities in tailoring the optimal strain fields for certain desired
functionalities.Comment: Errata for version
An Estimation of the Gamma-Ray Burst Afterglow Apparent Optical Brightness Distribution Function
By using recent publicly available observational data obtained in conjunction
with the NASA Swift gamma-ray burst mission and a novel data analysis
technique, we have been able to make some rough estimates of the GRB afterglow
apparent optical brightness distribution function. The results suggest that 71%
of all burst afterglows have optical magnitudes with mR < 22.1 at 1000 seconds
after the burst onset, the dimmest detected object in the data sample. There is
a strong indication that the apparent optical magnitude distribution function
peaks at mR ~ 19.5. Such estimates may prove useful in guiding future plans to
improve GRB counterpart observation programs. The employed numerical techniques
might find application in a variety of other data analysis problems in which
the intrinsic distributions must be inferred from a heterogeneous sample.Comment: 15 pages including 2 tables and 7 figures, accepted for publication
in Ap
Open Access Policy: Numbers, Analysis, Effectiveness
The PASTEUR4OA project analyses what makes an Open Access (OA) policy
effective. The total number of institutional or funder OA policies worldwide is
now 663 (March 2015), over half of them mandatory. ROARMAP, the policy
registry, has been rebuilt to record more policy detail and provide more
extensive search functionality. Deposit rates were measured for articles in
institutions' repositories and compared to the total number of WoS-indexed
articles published from those institutions. Average deposit rate was over four
times as high for institutions with a mandatory policy. Six positive
correlations were found between deposit rates and (1) Must-Deposit; (2)
Cannot-Waive-Deposit; (3) Deposit-Linked-to-Research-Evaluation; (4)
Cannot-Waive-Rights-Retention; (5) Must-Make-Deposit-OA (after allowable
embargo) and (6) Can-Waive-OA. For deposit latency, there is a positive
correlation between earlier deposit and (7) Must-Deposit-Immediately as well as
with (4) Cannot-Waive-Rights-Retention and with mandate age. There are not yet
enough OA policies to test whether still further policy conditions would
contribute to mandate effectiveness but the present findings already suggest
that it would be useful for current and future OA policies to adopt the seven
positive conditions so as to accelerate and maximise the growth of OA.Comment: 49 pages, 21 figures, 15 tables. Pasteur4OA Work Package 3 report:
Open Access policies 201
Stably free modules over virtually free groups
Let be the free group on generators and let be a finite
nilpotent group of non square-free order; we show that for each the
integral group ring has infinitely many stably free
modules of rank 1.Comment: 9 pages. The final publication is available at
http://www.springerlink.com doi:10.1007/s00013-012-0432-
Robustness: a New Form of Heredity Motivated by Dynamic Networks
We investigate a special case of hereditary property in graphs, referred to
as {\em robustness}. A property (or structure) is called robust in a graph
if it is inherited by all the connected spanning subgraphs of . We motivate
this definition using two different settings of dynamic networks. The first
corresponds to networks of low dynamicity, where some links may be permanently
removed so long as the network remains connected. The second corresponds to
highly-dynamic networks, where communication links appear and disappear
arbitrarily often, subject only to the requirement that the entities are
temporally connected in a recurrent fashion ({\it i.e.} they can always reach
each other through temporal paths). Each context induces a different
interpretation of the notion of robustness.
We start by motivating the definition and discussing the two interpretations,
after what we consider the notion independently from its interpretation, taking
as our focus the robustness of {\em maximal independent sets} (MIS). A graph
may or may not admit a robust MIS. We characterize the set of graphs \forallMIS
in which {\em all} MISs are robust. Then, we turn our attention to the graphs
that {\em admit} a robust MIS (\existsMIS). This class has a more complex
structure; we give a partial characterization in terms of elementary graph
properties, then a complete characterization by means of a (polynomial time)
decision algorithm that accepts if and only if a robust MIS exists. This
algorithm can be adapted to construct such a solution if one exists
The cost of noise reduction for departure and arrival operations of commercial tilt rotor aircraft
February 1976Includes bibliographical references (p. 50-51)The relationship between direct operating cost (DOC) and noise annoyance due to a departure and an arrival operation was developed for commercial tilt rotor aircraft. This was accomplished by generating a series of tilt rotor aircraft designs to meet various noise goals at minimum DOC. These vehicles ranged across the spectrum of possible noise levels from completely unconstrained to the quietest vehicles that could be designed within the study ground rules. Optimization parameters were varied to find the minimum DOC. This basic variation was then extended to different aircraft sizes and technology time frames. It was concluded that reducing noise annoyance by designing for lower rotor tip speeds is a very promising avenue for future research and development. It appears that the cost of halving the annoyance compared to an unconstrained design is insignificant and the cost of halving the annoyance again is small.Prepared under contract for Ames Research Center, National Aeronautics and Space Administratio
Colloidal diffusion and hydrodynamic screening near boundaries
The hydrodynamic interactions between colloidal particles in small ensembles are measured at varying distances from a no-slip surface over a range of inter-particle separations. The diffusion tensor for motion parallel to the wall of each ensemble is calculated by analyzing thousands of particle trajectories generated by blinking holographic optical tweezers and by dynamic simulation. The Stokesian
Dynamics simulations predict similar particle dynamics. By separating the dynamics into three classes of modes: self, relative and collective diffusion, we observe qualitatively different behavior depending on the relative magnitudes of the distance of the ensemble from the wall and the inter-particle separation. A simple picture of the pair-hydrodynamic interactions is developed, while many-body-hydrodynamic interactions give rise to more complicated behavior. The results demonstrate that the
effect of many-body hydrodynamic interactions in the presence of a wall is much richer than the single
particle behavior and that the multiple-particle behavior cannot be simply predicted by a superposition of pair interactions
- …
