7 research outputs found

    Insecticidal effects of deltamethrin in laboratory and field populations of Culicoides species: how effective are host-contact reduction methods in India?

    Get PDF
    BACKGROUND: Bluetongue virus (BTV) is transmitted by Culicoides biting midges and causes bluetongue (BT), a clinical disease observed primarily in sheep. BT has a detrimental effect on subsistence farmers in India, where hyperendemic outbreaks impact on smallholdings in the southern states of the country. In this study, we establish a reliable method for testing the toxic effects of deltamethrin on Culicoides and then compare deltamethrin with traditional control methods used by farmers in India. RESULTS: Effects of deltamethrin were initially tested using a colonised strain of Culicoides nubeculosus Meigen and a modified World Health Organisation exposure assay. This method was then applied to field populations of Culicoides spp. in India. The field population of C. oxystoma in India had a greater LC50 (0.012 ± 0.009%) for deltamethrin than laboratory-reared C.nubeculosus (0.0013 ± 0.0002%). Exposure of C. nubeculosus to deltamethrin at higher ambient temperatures resulted in greater rates of knockdown but a lower mortality rate at 24 h post-exposure. Behavioural assays with C. nubeculosus in WHO tubes provided evidence for contact irritancy and spatial repellence caused by deltamethrin. The field experiments in India, however, provided no evidence for repellent or toxic effects of deltamethrin. Traditional methods such as the application of neem oil and burning of neem leaves also provided no protection. CONCLUSIONS: Our study demonstrates that field-collected Culicoides in India are less susceptible to deltamethrin exposure than laboratory-bred C. nubeculosus and traditional methods of insect control do not provide protection to sheep. These low levels of susceptibility to deltamethrin have not been recorded before in field populations of Culicoides and suggest resistance to synthetic pyrethrioids. Alternative insect control methods, in addition to vaccination, may be needed to protect Indian livestock from BTV transmission

    DNA barcoding and surveillance sampling strategies for Culicoides biting midges (Diptera: Ceratopogonidae) in southern India

    Get PDF
    Background: Culicoides spp. biting midges transmit bluetongue virus (BTV), the aetiological agent of bluetongue (BT), an economically important disease of ruminants. In southern India, hyperendemic outbreaks of BT exert high cost to subsistence farmers in the region, impacting on sheep production. Effective Culicoides spp. monitoring methods coupled with accurate species identification can accelerate responses for minimising BT outbreaks. Here, we assessed the utility of sampling methods and DNA barcoding for detection and identification of Culicoides spp. in southern India, in order to provide an informed basis for future monitoring of their populations in the region. Methods: Culicoides spp. collected from Tamil Nadu and Karnataka were used to construct a framework for future morphological identification in surveillance, based on sequence comparison of the DNA barcode region of the mitochondrial cytochrome c oxidase I (COI) gene and achieving quality standards defined by the Barcode of Life initiative. Pairwise catches of Culicoides spp. were compared in diversity and abundance between green (570 nm) and ultraviolet (UV) (390 nm) light emitting diode (LED) suction traps at a single site in Chennai, Tamil Nadu over 20 nights of sampling in November 2013. Results: DNA barcode sequences of Culicoides spp. were mostly congruent both with existing DNA barcode data from other countries and with morphological identification of major vector species. However, sequence differences symptomatic of cryptic species diversity were present in some groups which require further investigation. While the diversity of species collected by the UV LED Center for Disease Control (CDC) trap did not significantly vary from that collected by the green LED CDC trap, the UV CDC significantly outperformed the green LED CDC trap with regard to the number of Culicoides individuals collected. Conclusions: Morphological identification of the majority of potential vector species of Culicoides spp. samples within southern India appears relatively robust; however, potential cryptic species diversity was present in some groups requiring further investigation. The UV LED CDC trap is recommended for surveillance of Culicoides in southern India

    DNA barcoding and surveillance sampling strategies for Culicoides biting midges (Diptera: Ceratopogonidae) in southern India

    Full text link

    Additional file 2: Table S3. of DNA barcoding and surveillance sampling strategies for Culicoides biting midges (Diptera: Ceratopogonidae) in southern India

    No full text
    Uncorrected percentage sequence distances, mean with range shown in parentheses. Intraspecific distances are shown in bold along the diagonal, interspecific distances are shown in the lower triangle (NA indicates comparison not possible due to singleton specimen present; number of specimens per species (n) shown in brackets with the number of specimens originating from this study; followed by the number originating from GenBank in parentheses). (XLSX 17 kb
    corecore