2,399 research outputs found

    Integrated waveguide and nanostructured sensor platform for surface-enhanced Raman spectroscopy

    No full text
    Limitations of current sensors include large dimensions, sometimes limited sensitivity and inherent single-parameter measurement capability. Surface-enhanced Raman spectroscopy can be utilized for environment and pharmaceutical applications with the intensity of the Raman scattering enhanced by a factor of 106. By fabricating and characterizing an integrated optical waveguide beneath a nanostructured precious metal coated surface a new surface-enhanced Raman spectroscopy sensing arrangement can be achieved. Nanostructured sensors can provide both multiparameter and high-resolution sensing. Using the slab waveguide core to interrogate the nanostructures at the base allows for the emission to reach discrete sensing areas effectively and should provide ideal parameters for maximum Raman interactions. Thin slab waveguide films of silicon oxynitride were etched and gold coated to create localized nanostructured sensing areas of various pitch, diameter, and shape. These were interrogated using a Ti:Sapphire laser tuned to 785-nm end coupled into the slab waveguide. The nanostructured sensors vertically projected a Raman signal, which was used to actively detect a thin layer of benzyl mercaptan attached to the sensors

    Feasibility of extracting a Σ\Sigma^- admixture probability in the neutron-rich Λ10^{10}_{\Lambda}Li hypernucleus

    Full text link
    We examine theoretically production of the neutron-rich Λ10^{10}_{\Lambda}Li hypernucleus by a double-charge exchange (π\pi^-, K+K^+) reaction on a 10^{10}B target with distorted-wave impulse approximation calculations. The result shows that the magnitude and shape of the calculated spectrum at 1.20 GeV/c by a one-step mechanism πpK+Σ\pi^-p \to K^+ \Sigma^- via Σ\Sigma^- doorways caused by a ΣpΛn\Sigma^-p \leftrightarrow \Lambda n coupling can explain the recent experimental data, and the Σ\Sigma^- admixture probability in Λ10^{10}_{\Lambda}Li is found to be the order of 101^{-1} %. The (π\pi^-, K+K^+) reaction provides a capability of extracting properties of wave functions with Λ\Lambda-Σ\Sigma coupling effects in neutron-rich nuclei, together with the reaction mechanism.Comment: 13 pages, 3 figure

    Full-Coupled Channel Approach to Doubly Strange ss-Shell Hypernuclei

    Get PDF
    We describe {\it ab initio} calculations of doubly strange, S=2S=-2, ss-shell hypernuclei (ΛΛ4^4_{\Lambda\Lambda}H, ΛΛ5^5_{\Lambda\Lambda}H, ΛΛ5^5_{\Lambda\Lambda}He and ΛΛ6^6_{\Lambda\Lambda}He) as a first attempt to explore the few-body problem of the {\it full}-coupled channel scheme for these systems. The wave function includes ΛΛ\Lambda\Lambda, ΛΣ\Lambda\Sigma, NΞN\Xi and ΣΣ\Sigma\Sigma channels. Minnesota NNNN, D2^\prime YNYN, and simulated YYYY potentials based on the Nijmegen hard-core model, are used. Bound state solutions of these systems are obtained. We find that a set of phenomenological B8B8B_8B_8 interactions among the octet baryons in S=0,1S=0, -1 and -2 sectors, which is consistent with all of the available experimental binding energies of S=0,1S=0, -1 and -2 ss-shell (hyper-)nuclei, can predict a particle stable bound state of ΛΛ4^4_{\Lambda\Lambda}H. For ΛΛ5^5_{\Lambda\Lambda}H and ΛΛ5^5_{\Lambda\Lambda}He, ΛNΣN\Lambda N-\Sigma N and ΞNΛΣ\Xi N-\Lambda\Sigma potentials enhance the net ΛΛNΞ\Lambda\Lambda-N\Xi coupling, and a large Ξ\Xi probability is obtained even for a weaker ΛΛNΞ\Lambda\Lambda-N\Xi potential.Comment: 4 pages, 1 figur

    Effect of repeated heating on thermal behavior of crude palm oil

    Get PDF
    Thermal behavior of crude palm oil (CPO) is important to determine the optimal fractionation process and product yield. In this study, the effects of repeated heating on thermal behavior of CPO were examined by differential scanning calorimetry. CPO was heated at 80°C for 5 min, and heating was repeated five times to simulate the common conditions experienced by an oil before reaching the refinery. The result revealed that the thermal behavior of CPO changed after heating. The change, however, occurred only in the behavior of the high-melting stearin peak but not in the low-melting olein peak. Overheating split the stearin peak at 17.30°C to two peaks at 18.88 and 17.30°C and formed a new peak at 11.28°C. Apparently, a new substance has been synthesized

    Sol-Gel Glass Holographic Light-Shaping Diffusers

    Get PDF
    Holographic glass light-shaping diffusers (GLSDs) are optical components for use in special-purpose illumination systems (see figure). When properly positioned with respect to lamps and areas to be illuminated, holographic GLSDs efficiently channel light from the lamps onto specified areas with specified distributions of illumination for example, uniform or nearly uniform irradiance can be concentrated with intensity confined to a peak a few degrees wide about normal incidence, over a circular or elliptical area. Holographic light diffusers were developed during the 1990s. The development of the present holographic GLSDs extends the prior development to incorporate sol-gel optical glass. To fabricate a holographic GLSD, one records a hologram on a sol-gel silica film formulated specially for this purpose. The hologram is a quasi-random, micro-sculpted pattern of smoothly varying changes in the index of refraction of the glass. The structures in this pattern act as an array of numerous miniature lenses that refract light passing through the GLSD, such that the transmitted light beam exhibits a precisely tailored energy distribution. In comparison with other light diffusers, holographic GLSDs function with remarkably high efficiency: they typically transmit 90 percent or more of the incident lamp light onto the designated areas. In addition, they can withstand temperatures in excess of 1,000 C. These characteristics make holographic GLSDs attractive for use in diverse lighting applications that involve high temperatures and/or requirements for high transmission efficiency for ultraviolet, visible, and near-infrared light. Examples include projectors, automobile headlights, aircraft landing lights, high-power laser illuminators, and industrial and scientific illuminators
    corecore