1,652 research outputs found
Building China: Informal Work and the New Precariat
[Excerpt] This book makes three main contributions to our understanding of informal work in China. First, it documents diversity in employment relations and the labor market. This diversity exists in spite of the fact that all of these workers are similar: they are all men who are unregistered migrants working informally in the construction industry in major cities in China. This book helps us make sense of that diversity and the diversity of informal precarious work more generally. Second, it expands our understanding of China’s emerging labor regime, which is central to labor control, intimately related to the urbanization process, and ultimately linked to China’s overall economic success. Finally, it shows how these migrants struggle against the disciplining process, contest exploitation, and protest in unique ways. Just as with other workers toiling under capitalism, important structural forces shape their work and lives but are not deterministic. Thus, this large, emerging segment of workers should not be overlooked when analyzing the complexities of class and class politics in China
Aneuploidy among androgenic progeny of hexaploid triticale (XTriticosecale Wittmack).
Doubled haploids are an established tool in plant breeding and research. Of several methods for their production, androgenesis is technically simple and can efficiently produce substantial numbers of lines. It is well suited to such crops as hexaploid triticale. Owing to meiotic irregularities of triticale hybrids, aneuploidy may affect the efficiency of androgenesis more severely than in meiotically stable crops. This study addresses the issue of aneuploidy among androgenic regenerants of triticale. Plant morphology, seed set and seed quality were better predictors of aneuploidy, as determined cytologically, than flow cytometry. Most aneuploids were hypoploids and these included nullisomics, telosomics, and translocation lines; among 42 chromosome plants were nulli-tetrasomics. Rye chromosomes involved in aneuploidy greatly outnumbered wheat chromosomes; in C(0) rye chromosomes 2R and 5R were most frequently involved. While the frequency of nullisomy 2R was fairly constant in most cross combinations, nullisomy 5R was more frequent in the most recalcitrant combination, and its frequency increased with time spent in culture with up to 70% of green plants recovered late being nullisomic 5R. Given that 5R was not involved in meiotic aberrations with an above-average frequency, it is possible that its absence promotes androgenesis or green plant regeneration. Overall, aneuploidy among tested combinations reduced the average efficiency of double haploid production by 35% and by 69% in one recalcitrant combination, seriously reducing the yield of useful lines
Orbital and Maxillofacial Computer Aided Surgery: Patient-Specific Finite Element Models To Predict Surgical Outcomes
This paper addresses an important issue raised for the clinical relevance of
Computer-Assisted Surgical applications, namely the methodology used to
automatically build patient-specific Finite Element (FE) models of anatomical
structures. From this perspective, a method is proposed, based on a technique
called the Mesh-Matching method, followed by a process that corrects mesh
irregularities. The Mesh-Matching algorithm generates patient-specific volume
meshes from an existing generic model. The mesh regularization process is based
on the Jacobian matrix transform related to the FE reference element and the
current element. This method for generating patient-specific FE models is first
applied to Computer-Assisted maxillofacial surgery, and more precisely to the
FE elastic modelling of patient facial soft tissues. For each patient, the
planned bone osteotomies (mandible, maxilla, chin) are used as boundary
conditions to deform the FE face model, in order to predict the aesthetic
outcome of the surgery. Seven FE patient-specific models were successfully
generated by our method. For one patient, the prediction of the FE model is
qualitatively compared with the patient's post-operative appearance, measured
from a Computer Tomography scan. Then, our methodology is applied to
Computer-Assisted orbital surgery. It is, therefore, evaluated for the
generation of eleven patient-specific FE poroelastic models of the orbital soft
tissues. These models are used to predict the consequences of the surgical
decompression of the orbit. More precisely, an average law is extrapolated from
the simulations carried out for each patient model. This law links the size of
the osteotomy (i.e. the surgical gesture) and the backward displacement of the
eyeball (the consequence of the surgical gesture)
A predictive mechano-biological model of the bone-implant healing
The quality of the fixation orthopaedic implant to its surrounding bone determines its clinical longevity. Up to 20% of hip replacement operations are currently revisions for aseptic loosening. While this fixation quality is determined primarily by the bone and tissue anchoring the implant, conditions influencing bone growth in the early post-operative period include the surgical technique and coupled mechanical and biochemical factors. The aim of the study was to propose an original mechano-biological formulation of the healing process of periprosthetic tissue. The multiphasic porous model involved the solid osseous matrix, the extracellular fluid phase, the osteoblastic cellular phase responsible from the bone formation and the growth factor phase promoting the cellular activity. To derive the non-linear convective-diffuse governing equations, mass balance was associated to cell active haptotactic and chemotactic migration, growth factor diffusion, cell proliferation (logistic law) and bone formation (reactive medium). The in-vivo application concerned a canine axisymmetric implant which was stable and mechanically unloaded. Predictive numerical results were compared to ex-vivo data from a histologic study. The generic healing pattern involving two main oscillations of the radial bone formation was well predicted. In the future, the model could assist in evaluating the role of growth factor concentrations and their temporal delivering as far as the role of pertinent sources such as bioactive coating or additional biomaterials
A solution of torsional problem by energy method in case of anisotropic cross-section
We proposed an original method to investigate the problem of torsion of anisotropic cross-section. We implemented an energy method to calculate the stress function represented by infinite series of trigonometric functions adapted to rectangular cross-section. After validation, we implemented a parametric sensitivity study to investigate the influence of the cross-section aspect ratio and the anisotropy level on the stress function, the strain energy density and the torsion stiffness. The process showed a fast convergence with a very good accuracy. The model showed a potential interest for the experimental identification of anisotropic material properties
An unusual meteor spectrum
An extraordinary spectrum of a meteor at a velocity of about 18.5 + or - 1.0 km/s was observed with an image orthicon camera. The radiant of the meteor was at an altitude of about 49 deg. It was first seen showing a yellow red continuous spectrum alone at a height of 137 + or - 8 km which is ascribed to the first positive group of nitrogen bands. After the meteor had descended to 116 + or - 6 km above sea level it brightened rapidly from its previous threshold brightness into a uniform continuum, the D-line of neutral sodium appeared, and at height 105 + or - 5 km all the other lines of the spectrum also appeared. The continuum remained dominant to the end. Water of hydration and entrained carbon flakes of characteristic dimension about 0.2 micron or less are proposed as constituents of the meteoroid to explain these phenomena
Disc volume properties from MRI in adolescent idiopathic scoliosis: correlation to surgical outcome
In young scoliotic patients, the post-operative consequence of spine fusion upon the free lower lumbar spine is one of the major concerns of the surgical treatment. The remodeling of free-motion segment and the role of discs below thoraco-lumbar fusions remains unknown. However, disc hydration and mass exchange flow between disc and vertebral body should play a significant role in the mechano-biology of the vertebral segment. Magnetic resonance imaging is relevant to study intervertebral discs in young scoliotic patients since related to hydration and non-radiant
- …
