9,761 research outputs found
Numberical simulation of the effects of radially injected barium plasma in the ionosphere
The morphology of the ion cloud in the radial shaped charge barium injection was studied. The shape of the ion cloud that remains after the explosive products and neutral barium clears away was examined. The ion cloud which has the configuration of a rimless wagon wheel is shown. The major features are the 2.5 km radius black hole in the center of the cloud, the surrounding ring of barium ion and the spokes of barium ionization radiating away from the center. The cloud shows no evolution after it emerges from the neutral debris and it is concluded that it is formed within 5 seconds of the event. A numerical model is used to calculate the motion of ions and electrons subject to the electrostatic and lorenz forces
Velocity Distributions and Correlations in Homogeneously Heated Granular Media
We compare the steady state velocity distributions from our three-dimensional
inelastic hard sphere molecular dynamics simulation for homogeneously heated
granular media, with the predictions of a mean field-type Enskog-Boltzmann
equation for inelastic hard spheres [van Noije & Ernst, Gran. Matt. {\bf 1}, 57
(1998)]. Although we find qualitative agreement for all values of density and
inelasticity, the quantitative disagreement approaches at high
inelasticity or density. By contrast the predictions of the pseudo-Maxwell
molecule model [Carrillo, Cercignani & Gamba, Phys. Rev. E, {\bf 62}, 7700
(2000)] are both qualitatively and quantitatively different from those of our
simulation. We also measure short-range and long-range velocity correlations
exhibiting non-zero correlations at contact before the collision, and being
consistent with a slow algebraic decay over a decade in the unit of the
diameter of the particle, proportional to , where . The existence of these correlations imply the failure of the
molecular chaos assumption and the mean field approximation, which is
responsible for the quantitative disagreement of the inelastic hard sphere
kinetic theory.Comment: 23 pages, 15 figures, Phys. Rev. E, in pres
Scaling forces to asteroid surfaces: The role of cohesion
The scaling of physical forces to the extremely low ambient gravitational
acceleration regimes found on the surfaces of small asteroids is performed.
Resulting from this, it is found that van der Waals cohesive forces between
regolith grains on asteroid surfaces should be a dominant force and compete
with particle weights and be greater, in general, than electrostatic and solar
radiation pressure forces. Based on this scaling, we interpret previous
experiments performed on cohesive powders in the terrestrial environment as
being relevant for the understanding of processes on asteroid surfaces. The
implications of these terrestrial experiments for interpreting observations of
asteroid surfaces and macro-porosity are considered, and yield interpretations
that differ from previously assumed processes for these environments. Based on
this understanding, we propose a new model for the end state of small, rapidly
rotating asteroids which allows them to be comprised of relatively fine
regolith grains held together by van der Waals cohesive forces.Comment: 54 pages, 7 figure
A computer-aided telescope pointing system utilizing a video star tracker
The Video Inertial Pointing (VIP) System developed to satisfy the acquisition and pointing requirements of astronomical telescopes is described. A unique feature of the system is the use of a single sensor to provide information for the generation of three axis pointing error signals and for a cathode ray tube (CRT) display of the star field. The pointing error signals are used to update the telescope's gyro stabilization and the CRT display is used by an operator to facilitate target acquisition and to aid in manual positioning of the telescope optical axis. A model of the system using a low light level vidicon built and flown on a balloon-borne infrared telescope is briefly described from a state of the art charge coupled device (CCD) sensor. The advanced system hardware is described and an analysis of the multi-star tracking and three axis error signal generation, along with an analysis and design of the gyro update filter, are presented. Results of a hybrid simulation are described in which the advanced VIP system hardware is driven by a digital simulation of the star field/CCD sensor and an analog simulation of the telescope and gyro stabilization dynamics
Making intergenerational connections – an evidence review
Improving intergenerational attitudes and relationships is a public policy focus in many countries around the world. In response to this, many organisations arrange intergenerational contact programmes in which younger and older people interact, with the aim of fostering improved attitudes reducing ageism and other beneficial outcomes.
Many psychological research projects have examined the nature of social contact between different age groups, but evidence from these has never been synthesised to inform the design of intergenerational contact programmes. Consequently, practitioners have not benefited from optimal use of evidence which could reliably inform practice and policy. This review, for Age UK, aims to address the evidence- practice gap. We synthesise international evidence generated from 48 peer reviewed research studies and evaluate 31 intergenerational contact programmes to explore what aspects make them more or less successful and provide useful insights for programme design and public policy
High-fidelity simulation of an ultrasonic standing-wave thermoacoustic engine with bulk viscosity effects
We have carried out boundary-layer-resolved, unstructured fully-compressible
Navier--Stokes simulations of an ultrasonic standing-wave thermoacoustic engine
(TAE) model. The model is constructed as a quarter-wavelength engine,
approximately 4 mm by 4 mm in size and operating at 25 kHz, and comprises a
thermoacoustic stack and a coin-shaped cavity, a design inspired by Flitcroft
and Symko (2013). Thermal and viscous boundary layers (order of 10
m) are resolved. Vibrational and rotational molecular relaxation
are modeled with an effective bulk viscosity coefficient modifying the viscous
stress tensor. The effective bulk viscosity coefficient is estimated from the
difference between theoretical and semi-empirical attenuation curves.
Contributions to the effective bulk viscosity coefficient can be identified as
from vibrational and rotational molecular relaxation. The inclusion of the
coefficient captures acoustic absorption from infrasonic (10 Hz) to
ultrasonic (100 kHz) frequencies. The value of bulk viscosity depends on
pressure, temperature, and frequency, as well as the relative humidity of the
working fluid. Simulations of the TAE are carried out to the limit cycle, with
growth rates and limit-cycle amplitudes varying non-monotonically with the
magnitude of bulk viscosity, reaching a maximum for a relative humidity level
of 5%. A corresponding linear model with minor losses was developed; the linear
model overpredicts transient growth rate but gives an accurate estimate of
limit cycle behavior. An improved understanding of thermoacoustic energy
conversion in the ultrasonic regime based on a high-fidelity computational
framework will help to further improve the power density advantages of
small-scale thermoacoustic engines.Comment: 55th AIAA Aerospace Sciences Meeting, AIAA SciTech, 201
- …
