1,734 research outputs found
Ionizing radiation from hydrogen recombination strongly suppresses the lithium scattering signature in the CMB
It has been suggested that secondary CMB anisotropies generated by neutral lithium could open a new observational window into the universe around the redshift z~400, and permit a determination of the primordial lithium abundance. The effect is due to resonant scattering in the allowed Li i doublet (2s2S1/2-2p2P1/2,3/2), so its observability depends on the formation history of neutral lithium. Here we show that the ultraviolet photons produced during hydrogen recombination are sufficient to keep lithium in the Li ii ionization stage in the relevant redshift range and suppress the neutral fraction by ~3 orders of magnitude from previous calculations, making the lithium signature unobservable
Primordial helium recombination III: Thomson scattering, isotope shifts, and cumulative results
Upcoming precision measurements of the temperature anisotropy of the cosmic
microwave background (CMB) at high multipoles will need to be complemented by a
more complete understanding of recombination, which determines the damping of
anisotropies on these scales. This is the third in a series of papers
describing an accurate theory of HeI and HeII recombination. Here we describe
the effect of Thomson scattering, the He isotope shift, the contribution of
rare decays, collisional processes, and peculiar motion. These effects are
found to be negligible: Thomson and He scattering modify the free electron
fraction at the level of several . The uncertainty in the
rate is significant, and for conservative estimates gives
uncertainties in of order . We describe several convergence
tests for the atomic level code and its inputs, derive an overall
error budget, and relate shifts in to the changes in , which
are at the level of 0.5% at . Finally, we summarize the main
corrections developed thus far. The remaining uncertainty from known effects is
in .Comment: 19 pages, 15 figures, to be submitted to PR
Primordial helium recombination II: two-photon processes
Interpretation of precision measurements of the cosmic microwave background
(CMB) will require a detailed understanding of the recombination era, which
determines such quantities as the acoustic oscillation scale and the Silk
damping scale. This paper is the second in a series devoted to the subject of
helium recombination, with a focus on two-photon processes in He I. The
standard treatment of these processes includes only the spontaneous two-photon
decay from the 2^1S level. We extend this treatment by including five
additional effects, some of which have been suggested in recent papers but
whose impact on He I recombination has not been fully quantified. These are:
(i) stimulated two-photon decays; (ii) two-photon absorption of redshifted HeI
line radiation; (iii) two-photon decays from highly excited levels in HeI (n^1S
and n^1D, with n>=3); (iv) Raman scattering; and (v) the finite width of the
2^1P^o resonance. We find that effect (iii) is highly suppressed when one takes
into account destructive interference between different intermediate states
contributing to the two-photon decay amplitude. Overall, these effects are
found to be insignificant: they modify the recombination history at the level
of several parts in 10^4.Comment: 19 pages, 11 figures, to be submitted to PR
A Method for Individual Source Brightness Estimation in Single- and Multi-band Data
We present a method of reliably extracting the flux of individual sources
from sky maps in the presence of noise and a source population in which number
counts are a steeply falling function of flux. The method is an extension of a
standard Bayesian procedure in the millimeter/submillimeter literature. As in
the standard method, the prior applied to source flux measurements is derived
from an estimate of the source counts as a function of flux, dN/dS. The key
feature of the new method is that it enables reliable extraction of properties
of individual sources, which previous methods in the literature do not. We
first present the method for extracting individual source fluxes from data in a
single observing band, then we extend the method to multiple bands, including
prior information about the spectral behavior of the source population(s). The
multi-band estimation technique is particularly relevant for classifying
individual sources into populations according to their spectral behavior. We
find that proper treatment of the correlated prior information between
observing bands is key to avoiding significant biases in estimations of
multi-band fluxes and spectral behavior, biases which lead to significant
numbers of misclassified sources. We test the single- and multi-band versions
of the method using simulated observations with observing parameters similar to
that of the South Pole Telescope data used in Vieira, et al. (2010).Comment: 11 emulateapj pages, 3 figures, revised to match published versio
Variable-delay Polarization Modulators for Cryogenic Millimeter-wave Applications
We describe the design, construction, and initial validation of the
variable-delay polarization modulator (VPM) designed for the PIPER cosmic
microwave background polarimeter. The VPM modulates between linear and circular
polarization by introducing a variable phase delay between orthogonal linear
polarizations. Each VPM has a diameter of 39 cm and is engineered to operate in
a cryogenic environment (1.5 K). We describe the mechanical design and
performance of the kinematic double-blade flexure and drive mechanism along
with the construction of the high precision wire grid polarizers.Comment: 8 pages, 10 Figures, Submitted to Review of Scientific Instrument
Amplification of simian retroviral sequences from human recipients of baboon liver transplants
Investigations into the use of baboons as organ donors for human transplant recipients, a procedure called xenotransplantation, have raised the specter of transmitting baboon viruses to humans and possibly establishing new human infectious diseases. Retrospective analysis of tissues from two human transplant recipients with end-stage hepatic disease who died 70 and 27 days after the transplantation of baboon livers revealed the presence of two simian retroviruses of baboon origin, simian foamy virus (SFV) and baboon endogenous virus (BaEV), in multiple tissue compartments. The presence of baboon mitochondrial DNA was also detected in these same tissues, suggesting that xenogeneic 'passenger leukocytes' harboring latent or active viral infections had migrated from the xenografts to distant sites within the human recipients. The persistence of SFV and BaEV in human recipients throughout the posttransplant period underscores the potential infectious risks associated with xenotransplantation
Fiber Optic Cables for Transmission of High-Power Laser Pulses in Spaceflight Applications
Lasers with high peak power pulses are commonly used in spaceflight missions for a wide range of applications, from LIDAR systems to optical communications. Due to the high optical power needed, the laser has to be located on the exterior of the satellite or coupled through a series of free space optics. This presents challenges for thermal management, radiation resistance, and mechanical design. Future applications will require multiple lasers located close together, which further complicates the design. Coupling the laser energy into a fiber optic cable allows the laser to be relocated to a more favorable position on the spacecraft. Typical fiber optic termination procedures are not sufficient for injection of these high-power laser pulses without catastrophic damage to the fiber endface. In the current study, we will review the causes of fiber damage during high-power injection and discuss our new manufacturing procedures that overcome these issues to permit fiber use with high reliability in these applications. We will also discuss the proper methods for launching the laser pulses into the fiber to avoid damage and how this is being implemented for current spaceflight missions
Measurement of 21 cm brightness fluctuations at z ~ 0.8 in cross-correlation
In this letter, 21 cm intensity maps acquired at the Green Bank Telescope are
cross-correlated with large-scale structure traced by galaxies in the WiggleZ
Dark Energy Survey. The data span the redshift range 0.6 < z < 1 over two
fields totaling ~41 deg. sq. and 190 hours of radio integration time. The
cross-correlation constrains Omega_HI b_HI r = [0.43 \pm 0.07 (stat.) \pm
0.04(sys.)] x 10^-3, where Omega_HI is the neutral hydrogen HI fraction, r is
the galaxy-hydrogen correlation coefficient, and b_HI is the HI bias parameter.
This is the most precise constraint on neutral hydrogen density fluctuations in
a challenging redshift range. Our measurement improves the previous 21 cm
cross-correlation at z ~ 0.8 both in its precision and in the range of scales
probed.Comment: 5 pages, 2 figures. As published in Ap
Primordial helium recombination. I. Feedback, line transfer, and continuum opacity
Precision measurements of the cosmic microwave background temperature anisotropy on scales ℓ>500 will be available in the near future. Successful interpretation of these data is dependent on a detailed understanding of the damping tail and cosmological recombination of both hydrogen and helium. This paper and two companion papers are devoted to a precise calculation of helium recombination. We discuss several aspects of the standard recombination picture, and then include feedback, radiative transfer in He i lines with partial redistribution, and continuum opacity from H i photoionization. In agreement with past calculations, we find that He ii recombination proceeds in Saha equilibrium, whereas He i recombination is delayed relative to Saha due to the low rates connecting excited states of He i to the ground state. However, we find that at z<2200 the continuum absorption by the rapidly increasing H i population becomes effective at destroying photons in the He i 21Po-11S line, causing He i recombination to finish around z≃1800, much earlier than previously estimated
- …
