129 research outputs found
Signal transducer and activator of transcription-1 localizes to the mitochondria and modulates mitophagy
The signal transducer and activator of transcription (STAT) proteins are latent transcription factors that have been shown to be involved in cell proliferation, development, apoptosis, and autophagy. STAT proteins undergo activation by phosphorylation at tyrosine 701 and serine 727 where they translocate to the nucleus to regulate gene expression. STAT1 has been shown to be involved in promoting apoptotic cell death in response to cardiac ischemia/reperfusion and has recently been shown by our laboratory to be involved in negatively regulating autophagy. These processes are thought to promote cell death and restrict cell survival leading to the generation of an infarct. Here we present data that shows STAT1 localizes to the mitochondria and co-immunoprecipitates with LC3. Furthermore, electron microscopy studies also reveal mitochondria from ex vivo I/R treated hearts of STAT1KO mice contained within a double membrane autophagosome indicating that STAT1 may be involved in negatively regulating mitophagy. This is the first description of STAT1 being localized to the mitochondria and also having a role in mitophagy
Preconditioning Involves Selective Mitophagy Mediated by Parkin and p62/SQSTM1
Autophagy-dependent mitochondrial turnover in response to cellular stress is necessary for maintaining cellular homeostasis. However, the mechanisms that govern the selective targeting of damaged mitochondria are poorly understood. Parkin, an E3 ubiquitin ligase, has been shown to be essential for the selective clearance of damaged mitochondria. Parkin is expressed in the heart, yet its function has not been investigated in the context of cardioprotection. We previously reported that autophagy is required for cardioprotection by ischemic preconditioning (IPC). In the present study, we used simulated ischemia (sI) in vitro and IPC of hearts to investigate the role of Parkin in mediating cardioprotection ex vivo and in vivo. In HL-1 cells, sI induced Parkin translocation to mitochondria and mitochondrial elimination. IPC induced Parkin translocation to mitochondria in Langendorff-perfused rat hearts and in vivo in mice subjected to regional IPC. Mitochondrial depolarization with an uncoupling agent similarly induced Parkin translocation to mitochondria in cells and Langendorff-perfused rat hearts. Mitochondrial loss was blunted in Atg5-deficient cells, revealing the requirement for autophagy in mitochondrial elimination. Consistent with previous reports indicating a role for p62/SQSTM1 in mitophagy, we found that depletion of p62 attenuated mitophagy and exacerbated cell death in HL-1 cardiomyocytes subjected to sI. While wild type mice showed p62 translocation to mitochondria and an increase in ubiquitination, Parkin knockout mice exhibited attenuated IPC-induced p62 translocation to the mitochondria. Importantly, ablation of Parkin in mice abolished the cardioprotective effects of IPC. These results reveal for the first time the crucial role of Parkin and mitophagy in cardioprotection
Pranolium
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/72226/1/j.1527-3466.1983.tb00447.x.pd
Regulation of Coronary Blood Flow
The heart is uniquely responsible for providing its own blood supply through the coronary circulation. Regulation of coronary blood flow is quite complex and, after over 100 years of dedicated research, is understood to be dictated through multiple mechanisms that include extravascular compressive forces (tissue pressure), coronary perfusion pressure, myogenic, local metabolic, endothelial as well as neural and hormonal influences. While each of these determinants can have profound influence over myocardial perfusion, largely through effects on end-effector ion channels, these mechanisms collectively modulate coronary vascular resistance and act to ensure that the myocardial requirements for oxygen and substrates are adequately provided by the coronary circulation. The purpose of this series of Comprehensive Physiology is to highlight current knowledge regarding the physiologic regulation of coronary blood flow, with emphasis on functional anatomy and the interplay between the physical and biological determinants of myocardial oxygen delivery. © 2017 American Physiological Society. Compr Physiol 7:321-382, 2017
Non-Specificity of a “Selective” Stain for Sarcoplasmic Reticulum in Cardiac Cells
The development of a selective staining procedure for cardiac sarcoplasmic reticulum has been reported and should be of great value in studies of pathologic conditions in which the sarcoplasmic reticulum may be altered. To be useful for this purpose, however, it must be reliably reproducible and specific enough so that other membrane systems are not stained, resulting in misinterpretation. We have applied the procedure of Waugh and Sommer in the study of rabbit heart and have found excellent visualization of the interstitial spaces and transverse tubular system, however, staining of the sarcoplasmic reticulum did not occur. The hearts were fixed with 1.6% glutaraldehyde in 300 mOsm cacodylate buffer, pH 7.2, for 5 min. by retrograde coronary artery perfusion via an aortic cannula. The perfusion was then switched to 0.05 M Tris (pH 7.6) in sodium chloride (total mil1iosmolarity = 300). After 5 min., the perfusion was switched to Tris containing 100 mg% 3-3' Diaminobenzidine tetrahydrochloride (DAB) and 0.01% hydrogen peroxide for 20 min.</jats:p
- …
