267 research outputs found

    Past changes in riverine input and ocean circulation in the Gulf of Guinea

    Get PDF
    Large river systems draining the West African Monsoon area deliver sediments and dissolved trace elements into the Gulf of Guinea (GoG) in the easternmost equatorial Atlantic. The different catchment areas of these river systems are characterized by different geological ages and rock types releasing distinct radiogenic neodymium isotope compositions during weathering which are supplied to the GoG. The main rivers discharging into the GoG are the Niger, the Sanaga, the Nyong and the Ntem with present day εNd signatures of -10.5 [1], -12.3, -12.5 and -28.1 [2], respectively. These riverine inputs mix with the tropical Atlantic surface waters. At intermediate water depths Antarctic Intermediate Water (AAIW) prevails whereas the deep basin at this location is mainly filled with NADW. We focus on a marine sediment core that was recovered off the Sanaga and Ntem Rivers and we reconstruct changes in riverine inputs and in mixing of surface and deep water masses over the past 140,000 years. Changes in riverine inputs most likely reflecting latitudinal shifts of the rainfall zones across the different catchment areas were obtained from the Nd isotope signatures of the residual detrital fraction of the sediment. Sediment leachates of several GoG core top samples reflect the riverine input from nearby rivers indicating transport of particles coated in the rivers. Both the sediment leachates and the residual detrital fraction show similar patterns, with shifts towards radiogenic values during the interglacials and least radiogenic values during glacial periods. This shift in εNd values may be attributed to the migration of the rainfall zones towards the north during interglacial times and thus implies the increased influence of the northern rivers, the Sanaga and Nyong. The oxidatively-reductively cleaned planktonic foraminiferal calcite of the core top samples in the GoG reflects surface seawater signatures. Non-reductively cleaned planktonic foraminiferal tests and cleaned shallow endo-benthic and epi-benthic foraminiferal tests were used to acquire information about past bottom waters. Difficulties in cleaning down core foraminiferal samples were experienced and these samples appear to be contaminated by secondary manganese and iron bearing phases, even after cleaning. Those phases may have overprinted the original surface water Nd isotope composition in the planktonic foraminiferal tests. As the planktonic and benthic foraminiferal values are overall similar to the sediment leachates, the foraminiferal isotope signatures are most likely overprinted by isotopic signals originating from the rivers due to remobilization processes in the sediments and formation of secondary phases such as Mn-carbonates, which are attached to the foraminiferal calcites. References: [1] Goldstein et al. (1984) Earth and Planetary Science Letter 70, 221-236. [2] Weldeab et al. (2011) Geophysical Research Letter 38, pp. 5

    Spatio-temporal evolution of the West African monsoon during the last deglaciation

    Get PDF
    On the basis of a multi-proxy data set from the Gulf of Guinea (eastern equatorial Atlantic) we reconstruct the spatio-temporal evolution of the West African monsoon (WAM) and present evidence for a decoupling between latitudinal shifts of the rain belt and WAM intensification. The onset of deglacial monsoon invigoration at ∼16,600 years before present lagged northward migration of a weak rainfall zone by ∼2800 years. Conversely, during the Younger Dryas (YD) time interval, WAM precipitation was severely reduced but we find no evidence for a large-scale retreat of the rainfall front. This observation is not in agreement with the hypothesis of a large-scale shift of the intertropical convergence zone south of the tropical WAM region during the YD. Our results can be better reconciled with the newly emerging concept of a strong influence of Tropical Easterly and African Easterly Jets on modern WAM

    Centennial scale climate instabilities in a wet early Holocene West African monsoon

    Get PDF
    A Holocene Gulf of Guinea record of riverine runoff, based on Ba/Ca in tests of a shallow-dwelling planktic foraminifer, and sea surface temperature (SST), based on Mg/Ca, reveals centennial-scale instabilities in West African monsoon (WAM) precipitation and eastern equatorial Atlantic (EEA) thermal conditions. The long-term Holocene climate trend is characterized by a warm and wet early-mid Holocene and gradual drying and cooling during the late Holocene. Superimposed on this trend are numerous centennial scale drops in precipitation during the early-mid Holocene. The greatest declines in early Holocene monsoon precipitation were accompanied by significant SST cooling in the EEA and correlate with drops in air temperature over Greenland and fresh water outbursts into the North Atlantic (NA). This observation suggests that early Holocene climate instabilities in the NA were closely linked to changes in the WAM. The strong imprint of NA events in summer monsoon precipitation suggests that these events were not confined to winter-time. The late Holocene does not show large amplitude changes in riverine runoff at the centennial level. The relatively stable late Holocene conditions likely reflect a weakening and stabilization of the monsoon system, probably due to diminished influence of the NA region due to a reduction in ice sheet

    The effects of temperature, salinity, and the carbonate system on Mg/Ca in Globigerinoides ruber (white) : a global sediment trap calibration

    Get PDF
    This research was funded by NSF grant NSF-OCE 1260696 awarded to S. Weldeab and D.W. Lea.The Mg/Ca of planktic foraminifera Globigerinoides ruber (white) is a widely applied proxy for tropical and sub-tropical sea-surface temperature. The accuracy with which temperature can be reconstructed depends on how accurately relationships between Mg/Ca and temperature and the multiple secondary controls on Mg/Ca are known; however, these relationships remain poorly quantified under oceanic conditions. Here, we present new calibrations based on 440 sediment trap/plankton tow samples from the Atlantic, Pacific and Indian Oceans, including 130 new samples from the Bay of Bengal/Arabian Sea and the tropical Atlantic Ocean. Our results indicate temperature, salinity and the carbonate system all significantly influence Mg/Ca in G. ruber (white). We propose two calibration models: The first model assumes pH is the controlling carbonate system parameter. In this model, Mg/Ca has a temperature sensitivity of 6.0±0.8%/°C (2σ), a salinity sensitivity of 3.3±2.2%/PSU and a pH sensitivity of −8.3±7.7%/0.1 pH units; The second model assumes carbonate ion concentration ([CO32−]) is the controlling carbonate system parameter. In this model, Mg/Ca has a temperature sensitivity of 6.7±0.8%/°C, a salinity sensitivity of 5.0±3.0%/PSU and a [CO32−] sensitivity of −0.24±0.11%/μmol kg−1. In both models, the temperature sensitivity is significantly lower than the widely-applied sensitivity of 9.0±0.6%/°C. Application of our new calibrations to down-core data from the Last Glacial Maximum, considering whole ocean changes in salinity and carbonate chemistry, indicate a cooling of 2.4±1.6°C in the tropical oceans if pH is the controlling parameter and 1.5±1.4°C if [CO32−] is the controlling parameter.PostprintPeer reviewe

    Comparison of Mg/Ca- and alkenone-based sea surface temperature estimates in the fresh water-influenced Gulf of Guinea, eastern equatorial Atlantic

    Get PDF
    This study presents a comparison of sea surface temperature (SST) estimates based on Mg/Ca ratios of Globigerinoides ruber and alkenone unsaturation index (U37 K′) in core sediment recovered from the Gulf of Guinea, eastern equatorial Atlantic. Mg/Ca- and U37 K′-based SST estimates yield fairly comparable results for the time interval 21,000–14,500 years and for the late Holocene. The early and middle Holocene, however, are largely characterized by a discrepant trend, with warm Mg/Ca and cold U37 K′ based SST estimates. This discrepant SST trend is accompanied by low sea surface salinity estimates (high riverine runoff) and biogenic sediment, which is characterized by high biogenic opal content, low carbonate content, and relatively low alkenone concentration. We hypothesize that the discrepancy in the reconstructed SSTs during the middle and early Holocene presumably suggests a period of elevated riverine input of dissolved silica and dominantly siliceous phytoplankton bloom in a low saline and warm surface water, while alkenone producers were likely prevalent in a season of cold SST and low riverine silica input. This study suggests that changes in the local hydrography and nutrient input have strong influence on the U37 K′-based SST estimate that may be unraveled by combining different SST proxies
    corecore