235 research outputs found
Recommended from our members
Training future actors in the food system: a new collaborative cross-institutional, interdisciplinary training programme for students
There is an urgent need to train a cohort of professionals who can address and resolve the increasing number of fundamental failings in the global food system. The solutions to these systemic failings go far beyond the production of food, and are embedded within broad political, economic, business, social, cultural and environmental contexts. The challenge of developing efficient, socially acceptable and sustainable food systems that meet the demands of a growing global population can only be tackled through an interdisciplinary systems approach that integrates social, economic and environmental dimensions. The new cross-institutional training programme, IFSTAL (Innovative Food Systems Teaching and Learning), is designed to improve post-graduate level knowledge and understanding of food systems from a much broader interdisciplinary perspective, which can be applied to students’ own studies. Ultimately, these graduates should be equipped to apply critical interdisciplinary systems thinking in the workplace to understand how problems are connected, their root causes and where critical leverage points might be. This article outlines the programme and presents a review of its first year (2015-2016 academic year)
Low Energy Nuclear Reaction Aircraft- 2013 ARMD Seedling Fund Phase I Project
This report serves as the final written documentation for the Aeronautic Research Mission Directorate (ARMD) Seedling Fund's Low Energy Nuclear Reaction (LENR) Aircraft Phase I project. The findings presented include propulsion system concepts, synergistic missions, and aircraft concepts. LENR is a form of nuclear energy that potentially has over 4,000 times the energy density of chemical energy sources. It is not expected to have any harmful emissions or radiation which makes it extremely appealing. There is a lot of interest in LENR, but there are no proven theories. This report does not explore the feasibility of LENR. Instead, it assumes that a working system is available. A design space exploration shows that LENR can enable long range and high speed missions. Six propulsion concepts, six missions, and four aircraft concepts are presented. This report also includes discussion of several issues and concerns that were uncovered during the study and potential research areas to infuse LENR aircraft into NASA's aeronautics research
Relaxin-1–deficient mice develop an age-related progression of renal fibrosis
Relaxin-1–deficient mice develop an age-related progression of renal fibrosis.BackgroundRelaxin (RLX) is a peptide hormone that stimulates the breakdown of collagen in preparation for parturition and when administered to various models of induced fibrosis. However, its significance in the aging kidney is yet to be established. In this study, we compared structural and functional changes in the kidney of aging relaxin-1 (RLX-/-) deficient mice and normal (RLX+/+) mice.MethodsThe kidney cortex and medulla of male and female RLX+/+ and RLX-/- mice at various ages were analyzed for collagen content, concentration, and types. Histologic analysis, reverse transcription-polymerase chain reaction (RT-PCR) of relaxin and relaxin receptor mRNA expression, receptor autoradiography, glomerular isolation/analysis, and serum/urine analysis were also employed. Relaxin treatment of RLX-/- mice was used to confirm the antifibrotic effects of the peptide.ResultsWe demonstrate an age-related progression of renal fibrosis in male, but not female, RLX-/- mice with significantly (P < 0.05) increased tissue dry weight, collagen (type I) content and concentration. The increased collagen expression in the kidney was associated with increased glomerular matrix and to a lesser extent, interstitial fibrosis in RLX-/- mice, which also had significantly increased serum creatinine (P < 0.05) and urinary protein (P < 0.05). Treatment of RLX-/- mice with relaxin in established stages of renal fibrosis resulted in the reversal of collagen deposition.ConclusionThis study supports the concept that relaxin may provide a means to regulate excessive collagen deposition during kidney development and in diseased states characterized by renal fibrosis
BHPR research: qualitative1. Complex reasoning determines patients' perception of outcome following foot surgery in rheumatoid arhtritis
Background: Foot surgery is common in patients with RA but research into surgical outcomes is limited and conceptually flawed as current outcome measures lack face validity: to date no one has asked patients what is important to them. This study aimed to determine which factors are important to patients when evaluating the success of foot surgery in RA Methods: Semi structured interviews of RA patients who had undergone foot surgery were conducted and transcribed verbatim. Thematic analysis of interviews was conducted to explore issues that were important to patients. Results: 11 RA patients (9 ♂, mean age 59, dis dur = 22yrs, mean of 3 yrs post op) with mixed experiences of foot surgery were interviewed. Patients interpreted outcome in respect to a multitude of factors, frequently positive change in one aspect contrasted with negative opinions about another. Overall, four major themes emerged. Function: Functional ability & participation in valued activities were very important to patients. Walking ability was a key concern but patients interpreted levels of activity in light of other aspects of their disease, reflecting on change in functional ability more than overall level. Positive feelings of improved mobility were often moderated by negative self perception ("I mean, I still walk like a waddling duck”). Appearance: Appearance was important to almost all patients but perhaps the most complex theme of all. Physical appearance, foot shape, and footwear were closely interlinked, yet patients saw these as distinct separate concepts. Patients need to legitimize these feelings was clear and they frequently entered into a defensive repertoire ("it's not cosmetic surgery; it's something that's more important than that, you know?”). Clinician opinion: Surgeons' post operative evaluation of the procedure was very influential. The impact of this appraisal continued to affect patients' lasting impression irrespective of how the outcome compared to their initial goals ("when he'd done it ... he said that hasn't worked as good as he'd wanted to ... but the pain has gone”). Pain: Whilst pain was important to almost all patients, it appeared to be less important than the other themes. Pain was predominately raised when it influenced other themes, such as function; many still felt the need to legitimize their foot pain in order for health professionals to take it seriously ("in the end I went to my GP because it had happened a few times and I went to an orthopaedic surgeon who was quite dismissive of it, it was like what are you complaining about”). Conclusions: Patients interpret the outcome of foot surgery using a multitude of interrelated factors, particularly functional ability, appearance and surgeons' appraisal of the procedure. While pain was often noted, this appeared less important than other factors in the overall outcome of the surgery. Future research into foot surgery should incorporate the complexity of how patients determine their outcome Disclosure statement: All authors have declared no conflicts of interes
Recommended from our members
A future workforce of food-system analysts
A programme developed across five UK universities aims to equip graduate professionals with the skills, tools and capabilities to better understand and manage food-system complexity for food security, for the environment and for enterprise
Natural geochemical markers reveal environmental history and population connectivity of common cuttlefish in the Atlantic Ocean and Mediterranean Sea
Natural markers (delta C-13 and delta O-18 stable isotopes) in the cuttlebones of the European common cuttlefish (Sepia officinalis) were determined for individuals collected across a substantial portion of their range in the Northeast Atlantic Ocean (NEAO) and Mediterranean Sea. Cuttlebone delta C-13 and delta O-18 were quantified for core and edge material to characterize geochemical signatures associated with early (juvenile) and recent (sub-adult/adult) life-history periods, respectively. Regional shifts in cuttlebone delta C-13 and delta O-18 values were detected across the 12 sites investigated. Individuals collected from sites in the NEAO displayed more enriched delta C-13 and delta O-18 values relative to sites in the Mediterranean Sea, with the latter also showing salient differences in both markers among western, central and eastern collection areas. Classification success based on cuttlebone delta C-13 and delta O-18 values to four geographical regions (NEAO, western, central and eastern Mediterranean Sea) was relatively high, suggesting that environmental conditions in each region were distinct and produced area-specific geochemical signatures on the cuttlebones ofS. officinalis. A modified delta C-13 and delta O-18 baseline was developed from sites proximal to the Strait of Gibraltar in both the NEAO and Mediterranean Sea to assess potential mixing through this corridor. Nearly, all (95%) of delta C-13 and delta O-18 signatures ofS. officinaliscollected in the area of the NEAO closest to the Strait of Gibraltar (Gulf of Cadiz) matched the signatures of specimens collected in the western Mediterranean, signifying potential movement and mixing of individuals through this passageway. This study extends the current application of these geochemical markers for assessing the natal origin and population connectivity of this species and potentially other taxa that inhabit this geographical area.Portuguese Foundation for Science and Technology: IF/00576/2014info:eu-repo/semantics/publishedVersio
Recommended from our members
Developing a functional food systems literacy for interdisciplinary dynamic learning networks
The impact of human activity on the planet cannot be understated. Food systems are at the centre of a tangled web of interactions affecting all life. They are a complex nexus that directly and indirectly affects, and is affected by, a diverse set of social, environmental and technological phenomena. The complexity and often intractability of these interactions have created a variety of food-related problems that people seek to address in a collaborative and interdisciplinary manner through the adoption of a holistic food systems perspective. However, operationalising a systemic approach to address food system challenges is not a guarantee of success or positive outcomes. This is largely due to the partiality inherent in taking a systems perspective, and the difficulty in communicating these different perspectives among stakeholders. A functional food systems literacy is therefore required to aid people in communicating and collaborating on food system problems within dynamic learning networks. The Interdisciplinary Food Systems Teaching and Learning (IFSTAL) programme has operated over six years (2015-2021) as a social learning system to develop a food systems pedagogy with a range of international and multi-sectoral partners. The findings in this paper arise out of iterative reflexive practice into our teaching approach and delivery methods by former and current staff. In order to foster integrative engagement on food system challenges, we propose and define a functional food systems literacy – a theoretical minimum that can aid diverse stakeholders to explore and intervene in food systems through more effective communication and collaboration. Derived from a reflective analysis of instruments and methods in delivering the IFSTAL programme, we provide a framework that disaggregates functional food systems literacy according to four knowledge types, and includes examples of skills and activities utilised in the IFSTAL programme to support learning in these different domains. We argue that claims to comprehensive food systems knowledge are unrealistic and therefore propose that a functional food systems literacy should focus on providing a means of navigating partial claims to knowledge, uncertainty and fostering effective collaboration. We believe that this will enhance the capabilities of stakeholders to work effectively within dynamic learning networks
Chromogenic enzyme substrates based on [2-(nitroaryl)ethenyl]pyridinium and quinolinium derivatives for the detection of nitroreductase activity in clinically important microorganisms†
A series of [2-(nitroaryl)ethenyl]pyridinium and quinolinium derivatives have been synthesised as potential indicators of microbial nitroreductase activity. When assessed against a selection of 20 clinically important pathogenic microorganisms, microbial colonies of various colours (yellow, green, red, brown, black) were produced and attributed to nitroreductase activity. Most substrates elicited colour responses with Gram-negative microorganisms. In contrast, the growth of several species of Gram-positive microorganisms and yeasts was often inhibited by the substrates and hence coloured responses were not seen.
Graphical abstract: Chromogenic enzyme substrates based on [2-(nitroaryl)ethenyl]pyridinium and quinolinium derivatives for the detection of nitroreductase activity in clinically important microorganism
Enhancing Drug Discovery and Development through the Integration of Medicinal Chemistry, Chemical Biology, and Academia-Industry Partnerships: Insights from Roche’s Endocannabinoid System Projects
: The endocannabinoid system (ECS) is a critical regulatory network composed of endogenous cannabinoids (eCBs), their synthesizing and degrading enzymes, and associated receptors. It is integral to maintaining homeostasis and orchestrating key functions within the central nervous and immune systems. Given its therapeutic significance, we have launched a series of drug discovery endeavors aimed at ECS targets, including peroxisome proliferator-activated receptors (PPARs), cannabinoid receptors types 1 (CB1R) and 2 (CB2R), and monoacylglycerol lipase (MAGL), addressing a wide array of medical needs. The pursuit of new therapeutic agents has been enhanced by the creation of specialized labeled chemical probes, which aid in target localization, mechanistic studies, assay development, and the establishment of biomarkers for target engagement. By fusing medicinal chemistry with chemical biology in a comprehensive, translational end-to-end drug discovery strategy, we have expedited the development of novel therapeutics. Additionally, this strategy promises to foster highly productive partnerships between industry and academia, as will be illustrated through various examples
The 10,000-year biocultural history of fallow deer and its implications for conservation policy
Over the last 10,000 y, humans have manipulated fallow deer populations with varying outcomes. Persian fallow deer (Dama mesopotamica) are now endangered. European fallow deer (Dama dama) are globally widespread and are simultaneously considered wild, domestic, endangered, invasive and are even the national animal of Barbuda and Antigua. Despite their close association with people, there is no consensus regarding their natural ranges or the timing and circumstances of their human-mediated translocations and extirpations. Our mitochondrial analyses of modern and archaeological specimens revealed two distinct clades of European fallow deer present in Anatolia and the Balkans. Zooarchaeological evidence suggests these regions were their sole glacial refugia. By combining biomolecular analyses with archaeological and textual evidence, we chart the declining distribution of Persian fallow deer and demonstrate that humans repeatedly translocated European fallow deer, sourced from the most geographically distant populations. Deer taken to Neolithic Chios and Rhodes derived not from nearby Anatolia, but from the Balkans. Though fallow deer were translocated throughout the Mediterranean as part of their association with the Greco-Roman goddesses Artemis and Diana, deer taken to Roman Mallorca were not locally available Dama dama, but Dama mesopotamica. Romans also initially introduced fallow deer to Northern Europe but the species became extinct and was reintroduced in the medieval period, this time from Anatolia. European colonial powers then transported deer populations across the globe. The biocultural histories of fallow deer challenge preconceptions about the divisions between wild and domestic species and provide information that should underpin modern management strategies
- …
