275 research outputs found
Dynamic response modelling of MEMS micromirror corner cube reflectors with angular vertical combdrives
Published versio
Self-assembled 3D silicon microscanners with self-assembled electrostatic drives
Published versio
Magnetoinductive breathers in magnetic metamaterials
The existence and stability of discrete breathers (DBs) in one-dimensional
and two-dimensional magnetic metamaterials (MMs), which consist of periodic
arrangem ents (arrays) of split-ring resonators (SRRs), is investigated
numerically. We consider different configurations of the SRR arrays, which are
related to the relative orientation of the SRRs in the MM, both in one and two
spatial dimensions. In the latter case we also consider anisotropic MMs. Using
standard numerical methods we construct several types of linearly stable
breather excitations both in Hamiltonian and dissipative MMs (dissipative
breathers). The study of stability in both cases is performed using standard
Floquet analysi s. In both cases we found that the increase of dimensionality
from one to two spatial dimensions does not destroy the DBs, which may also
exist in the case of moderate anisotropy (in two dimensions). In dissipative
MMs, the dynamics is governed by a power balance between the mainly Ohmic
dissipation and driving by an alternating magnetic field. In that case it is
demonstrated that DB excitation locally alters the magnetic response of MMs
from paramagnetic to diamagnetic. Moreover, when the frequency of the applied
field approaches the SRR resonance frequency, the magnetic response of the MM
in the region of the DB excitation may even become negative (extreme
diamagnetic).Comment: 12 pages 15 figure
Noise performance of magneto-inductive cables
Magneto-inductive (MI) waveguides are metamaterial structures based on periodic arrangements of inductively coupled resonant magnetic elements. They are of interest for power transfer, communications and sensing, and can be realised in a flexible cable format. Signal-to-noise ratio is extremely important in applications involving signals. Here, we present the first experimental measurements of the noise performance of metamaterial cables. We focus on an application involving radiofrequency signal transmission in internal magnetic resonance imaging (MRI), where the subdivision of the metamaterial cable provides intrinsic patient safety. We consider MI cables suitable for use at 300 MHz during 1H MRI at 7 T, and find noise figures of 2.3–2.8 dB/m, together with losses of 3.0–3.9 dB/m, in good agreement with model calculations. These values are high compared to conventional cables, but become acceptable when (as here) the environment precludes the use of continuous conductors. To understand this behaviour, we present arguments for the fundamental performance limitations of these cables
Improving surface acousto-optical interaction by high aspect ratio electrodes
International audienceThe acousto-optical interaction of an optical wave confined inside a waveguide and a surface acoustic wave launched by an interdigital transducer (IDT) at the surface of a piezoelectric material is considered. The IDT with high aspect ratio electrodes supports several acoustic modes that are strongly confined to the surface, causing a significant increase in the strain underneath the surface. A finite element method is employed to model the surface acoustic waves generated by a finite length IDT with 12 electrode pairs and subsequently to study their interaction with an optical wave propagating in a waveguide buried in the lithium niobate substrate supporting the electrodes. The interaction can be increased up to 600 times using these new types of surface acoustic waves as compared to using a conventional IDT with thin electrodes. This result could find applications in improved acousto-optical integrated modulators
A theory of metamaterials based on periodically loaded transmission lines: Interaction between magnetoinductive and electromagnetic waves
Published versio
Broadband coupling transducers for magneto-inductive cables
A broadband resonant transducer capable of low-loss coupling between magneto-inductive (MI) waveguides and a real impedance is introduced. The transducer is an L–C circuit resonating at the resonant frequency of the elements forming the guide. However, the values of the components in the transducer are different, and chosen to obtain two separate nulls in reflection so that low reflection is obtained over a wide spectral range. The transducer can be incorporated into the MI waveguide itself, allowing a connection between a MI cable and a conventional system to be made as a simple splice. The design is confirmed using 2 m length of low-loss thin-film MI cables formed using copper-clad polyimide and operating near 100 MHz frequency.</jats:p
Takagi-Taupin Description of X-ray Dynamical Diffraction from Diffractive Optics with Large Numerical Aperture
We present a formalism of x-ray dynamical diffraction from volume diffractive
optics with large numerical aperture and high aspect ratio, in an analogy to
the Takagi-Taupin equations for strained single crystals. We derive a set of
basic equations for dynamical diffraction from volume diffractive optics, which
enable us to study the focusing property of these optics with various grating
profiles. We study volume diffractive optics that satisfy the Bragg condition
to various degrees, namely flat, tilted and wedged geometries, and derive the
curved geometries required for ultimate focusing. We show that the curved
geometries satisfy the Bragg condition everywhere and phase requirement for
point focusing, and effectively focus hard x-rays to a scale close to the
wavelength.Comment: 18 pages, 12 figure
- …
