275 research outputs found

    Dynamic response modelling of MEMS micromirror corner cube reflectors with angular vertical combdrives

    No full text
    Published versio

    Self-assembled 3D silicon microscanners with self-assembled electrostatic drives

    No full text
    Published versio

    Magnetoinductive breathers in magnetic metamaterials

    Full text link
    The existence and stability of discrete breathers (DBs) in one-dimensional and two-dimensional magnetic metamaterials (MMs), which consist of periodic arrangem ents (arrays) of split-ring resonators (SRRs), is investigated numerically. We consider different configurations of the SRR arrays, which are related to the relative orientation of the SRRs in the MM, both in one and two spatial dimensions. In the latter case we also consider anisotropic MMs. Using standard numerical methods we construct several types of linearly stable breather excitations both in Hamiltonian and dissipative MMs (dissipative breathers). The study of stability in both cases is performed using standard Floquet analysi s. In both cases we found that the increase of dimensionality from one to two spatial dimensions does not destroy the DBs, which may also exist in the case of moderate anisotropy (in two dimensions). In dissipative MMs, the dynamics is governed by a power balance between the mainly Ohmic dissipation and driving by an alternating magnetic field. In that case it is demonstrated that DB excitation locally alters the magnetic response of MMs from paramagnetic to diamagnetic. Moreover, when the frequency of the applied field approaches the SRR resonance frequency, the magnetic response of the MM in the region of the DB excitation may even become negative (extreme diamagnetic).Comment: 12 pages 15 figure

    Noise performance of magneto-inductive cables

    Get PDF
    Magneto-inductive (MI) waveguides are metamaterial structures based on periodic arrangements of inductively coupled resonant magnetic elements. They are of interest for power transfer, communications and sensing, and can be realised in a flexible cable format. Signal-to-noise ratio is extremely important in applications involving signals. Here, we present the first experimental measurements of the noise performance of metamaterial cables. We focus on an application involving radiofrequency signal transmission in internal magnetic resonance imaging (MRI), where the subdivision of the metamaterial cable provides intrinsic patient safety. We consider MI cables suitable for use at 300 MHz during 1H MRI at 7 T, and find noise figures of 2.3–2.8 dB/m, together with losses of 3.0–3.9 dB/m, in good agreement with model calculations. These values are high compared to conventional cables, but become acceptable when (as here) the environment precludes the use of continuous conductors. To understand this behaviour, we present arguments for the fundamental performance limitations of these cables

    Improving surface acousto-optical interaction by high aspect ratio electrodes

    Get PDF
    International audienceThe acousto-optical interaction of an optical wave confined inside a waveguide and a surface acoustic wave launched by an interdigital transducer (IDT) at the surface of a piezoelectric material is considered. The IDT with high aspect ratio electrodes supports several acoustic modes that are strongly confined to the surface, causing a significant increase in the strain underneath the surface. A finite element method is employed to model the surface acoustic waves generated by a finite length IDT with 12 electrode pairs and subsequently to study their interaction with an optical wave propagating in a waveguide buried in the lithium niobate substrate supporting the electrodes. The interaction can be increased up to 600 times using these new types of surface acoustic waves as compared to using a conventional IDT with thin electrodes. This result could find applications in improved acousto-optical integrated modulators

    Broadband coupling transducers for magneto-inductive cables

    Full text link
    A broadband resonant transducer capable of low-loss coupling between magneto-inductive (MI) waveguides and a real impedance is introduced. The transducer is an L–C circuit resonating at the resonant frequency of the elements forming the guide. However, the values of the components in the transducer are different, and chosen to obtain two separate nulls in reflection so that low reflection is obtained over a wide spectral range. The transducer can be incorporated into the MI waveguide itself, allowing a connection between a MI cable and a conventional system to be made as a simple splice. The design is confirmed using 2 m length of low-loss thin-film MI cables formed using copper-clad polyimide and operating near 100 MHz frequency.</jats:p

    Takagi-Taupin Description of X-ray Dynamical Diffraction from Diffractive Optics with Large Numerical Aperture

    Full text link
    We present a formalism of x-ray dynamical diffraction from volume diffractive optics with large numerical aperture and high aspect ratio, in an analogy to the Takagi-Taupin equations for strained single crystals. We derive a set of basic equations for dynamical diffraction from volume diffractive optics, which enable us to study the focusing property of these optics with various grating profiles. We study volume diffractive optics that satisfy the Bragg condition to various degrees, namely flat, tilted and wedged geometries, and derive the curved geometries required for ultimate focusing. We show that the curved geometries satisfy the Bragg condition everywhere and phase requirement for point focusing, and effectively focus hard x-rays to a scale close to the wavelength.Comment: 18 pages, 12 figure
    corecore