442 research outputs found
Nitrogen Oxides Emissions, Abatement Technologies and Related Costs for Europe in the RAINS Model Database
This paper describes the module of the Regional Air Pollution Information and Simulation (RAINS) model dealing with the potential and costs for controlling emissions of nitrogen oxides. The paper discusses the selected aggregation level of the emission generating activities and reviews the major options for controlling NOx emissions. Algorithms for estimating emission control costs for stationary and mobile sources are presented. The cost calculation distinguishes 'general' (i.e., valid for all countries) and 'country-specific' parameters in order to capture characteristic technology- and site-specific factors influencing the actual costs of applying a certain measure under a given condition. The methodology is illustrated by two examples for typical control technologies (combustion modification together with selective catalytic reduction for power plant boilers and catalytic converters for cars). Finally, the method for constructing emission batement cost curves showing the relationships between the level of remaining emissions and the associated cost is explained.
The general parameters used for cost calculation are presented in the main body of the report, while all country-specific parameters are contained in a number of appendices. Furthermore, energy scenarios as they are currently implemented in the RAINS model and the resulting cost curves for NOx control related to these energy scenarios are presented in these annexes
Arbetsinstruktion för maskinell plantering
Se även: Koneellisen metsänistutuksen opasInstruktionen har tagits fram i utvecklingsprojektet ”Teknologialla tehokuutta metsänhoitoon – koneellisen istutuksen laaja käyttöönotto”. Projektets mål är att effektivisera skogsvården genom att öka maskinell plantering. Det riksomfattande projektet är ett samarbete mellan Finlands skogscentral och Skogsforskningsinstitutet. Projektet finansieras av Närings-, trafik- och miljöcentralen i Tavastland
Sulfur Emissions, Abatement Technologies and Related Costs for Europe in the RAINS Model Database
This paper describes the part of the Regional Pollution Information and Simulation (RAINS) model dealing with the potential and costs controlling emissions of sulfur dioxide. The paper describes the selected aggregation level of the emission generating activities and reviews the major options for controlling SO2 emissions. An algorithm for estimating emission control costs is presented. The cost calculation distinguishes 'general'(i.e., valid for all countries) and 'country-specific' parameters in order to capture characteristic technology- and site-specific factors influencing the actual costs of applying a certain measure under a given condition. The methodology is illustrated by two examples for typical control technologies (wet flue gas desulfurization and the use of low-sulfur gas oil). Finally, the method for constructing emission abatement cost curves showing the relationships between the level of remaining emissions and the associated costs is explained.
The general parameters used in the cost calculations are presented in the main body of the report, while all country-specific parameters are contained in a number of appendices. In addition, these country-specific appendices present the energy scenarios as they are currently implemented in the RAINS model, and the resulting cost curves for SO2 control related to these energy scenarios
Ionic Liquids to Replace Hydrazine
A method for developing safe, easy-to-handle propellants has been developed based upon ionic liquids (ILs) or their eutectic mixtures. An IL is a binary combination of a typically organic cation and anion, which generally produces an ionic salt with a melting point below 100 deg C. Many ILs have melting points near, or even below, room temperature (room temperature ionic liquids, RTILs). More importantly, a number of ILs have a positive enthalpy of formation. This means the thermal energy released during decomposition reactions makes energetic ILs ideal for use as propellants. In this specific work, to date, a baseline set of energetic ILs has been identified, synthesized, and characterized. Many of the ILs in this set have excellent performance potential in their own right. In all, ten ILs were characterized for their enthalpy of formation, density, melting point, glass transition point (if applicable), and decomposition temperature. Enthalpy of formation was measured using a microcalorimeter designed specifically to test milligram amounts of energetic materials. Of the ten ILs characterized, five offer higher Isp performance than hydrazine, ranging between 10 and 113 seconds higher than the state-of-the-art propellant. To achieve this level of performance, the energetic cations 4- amino-l,2,4-triazolium and 3-amino-1,2,4-triazolium were paired with various anions in the nitrate, dicyanamide, chloride, and 3-nitro-l,2,4-triazole families. Protonation, alkylation, and butylation synthesis routes were used for creation of the different salts
NASA's Launch Propulsion Systems Technology Roadmap
Safe, reliable, and affordable access to low-Earth (LEO) orbit is necessary for all of the United States (US) space endeavors. In 2010, NASA s Office of the Chief Technologist commissioned 14 teams to develop technology roadmaps that could be used to guide the Agency s and US technology investment decisions for the next few decades. The Launch Propulsion Systems Technology Area (LPSTA) team was tasked to address the propulsion technology challenges for access to LEO. The developed LPSTA roadmap addresses technologies that enhance existing solid or liquid propulsion technologies and their related ancillary systems or significantly advance the technology readiness level (TRL) of less mature systems like airbreathing, unconventional, and other launch technologies. In developing this roadmap, the LPSTA team consulted previous NASA, military, and industry studies as well as subject matter experts to develop their assessment of this field, which has fundamental technological and strategic impacts for US space capabilities
Tekniset ratkaisut ja pedagogiset mahdollisuudet. : 2. Seurantaraportti Helsingin koulujen tietoteknisistä edellytyksistä
Executive Summary of Propulsion on the Orion Abort Flight-Test Vehicles
The National Aeronautics and Space Administration Orion Flight Test Office was tasked with conducting a series of flight tests in several launch abort scenarios to certify that the Orion Launch Abort System is capable of delivering astronauts aboard the Orion Crew Module to a safe environment, away from a failed booster. The first of this series was the Orion Pad Abort 1 Flight-Test Vehicle, which was successfully flown on May 6, 2010 at the White Sands Missile Range in New Mexico. This report provides a brief overview of the three propulsive subsystems used on the Pad Abort 1 Flight-Test Vehicle. An overview of the propulsive systems originally planned for future flight-test vehicles is also provided, which also includes the cold gas Reaction Control System within the Crew Module, and the Peacekeeper first stage rocket motor encased within the Abort Test Booster aeroshell. Although the Constellation program has been cancelled and the operational role of the Orion spacecraft has significantly evolved, lessons learned from Pad Abort 1 and the other flight-test vehicles could certainly contribute to the vehicle architecture of many future human-rated space launch vehicle
- …
