570 research outputs found

    Optical Spectroscopy as a Probe of Gaps and Kinetic Electronic Energy in p- and n-type cuprates

    Full text link
    The real part of the optical in-plane conductivity of p-- and n--type cuprates thin films at various doping levels was deduced from highly accurate reflectivity measurements. We present here a comprehensive set of optical spectral weight data as a function of the temperature T(>TcT (> T_c), for underdoped and overdoped samples. The temperature dependence of the spectral weight is not universal. Using various cut-off frequencies for the spectral weight, we show that n--type Pr2x_{2-x}Cex_xCuO4_4 and p--type Bi2_2Sr2_2CaCu2_2O8+δ_{8+\delta} exhibit both similarities and striking differences. The Fermi surface is closed in overdoped metallic samples. In underdoped Pr2x_{2-x}Cex_xCuO4_4 samples, it clearly breaks into arcs, giving rise to a "pseudogap" signature. It is argued that such a signature is subtle in underdoped Bi2_2Sr2_2CaCu2_2O8+δ_{8+\delta}.Comment: Proceedings M2SHTSCVIII, to appear in Physica

    Temperature dependence of the spectral weight in p- and n-type cuprates: a study of normal state partial gaps and electronic kinetic energy

    Full text link
    The optical conductivity of CuO2 (copper-oxygen) planes in p- and n-type cuprates thin films at various doping levels is deduced from highly accurate reflectivity data. The temperature dependence of the real part sigma1(omega) of this optical conductivity and the corresponding spectral weight allow to track the opening of a partial gap in the normal state of n-type Pr{2-x}Ce(x)CuO4 (PCCO), but not of p-type Bi2Sr2CaCu2O(8+delta} (BSCCO) cuprates. This is a clear difference between these two families of cuprates, which we briefly discuss. In BSCCO, the change of the electronic kinetic energy Ekin - deduced from the spectral weight- at the superconducting transition is found to cross over from a conventional BCS behavior (increase of Ekin below Tc to an unconventional behavior (decrease of Ekin below Tc) as the free carrier density decreases. This behavior appears to be linked to the energy scale over which spectral weight is lost and goes into the superfluid condensate, hence may be related to Mott physics

    Optical sum rule in metals with a strong interaction

    Full text link
    The restricted optical sum rule and its dependence on the temperature, a superconducting gap and the cutoff energy have been investigated. As known this sum rule depends on the cutoff energy and the relaxation rate even for a homogeneous electron gas interacting with impurities or phonons. It is shown here that additional dependence of the spectral weight on a superconducting gap is very small in this model and this effect disappears totally when the relaxation rate is equal zero. The model metal with a single band is considered in details. It is well known that for this model there is the dependence of the sum rule on the temperature and the energy gap even in the case when the relaxation is absent. This dependence exists due to the smearing of the electron distribution function and it is expressed in the terms of Sommerfeld expansion. Here it is shown that these effects are considerably smaller than that of related with the relaxation rate if the band width is larger than the average phonon frequency. It is shown also that the experimental data about the temperature dependence of the spectral weight for the high- materials can be successfully explained in the framework approach based on the temperature dependence of the relaxation rateComment: 13 pages, 7 figures, the talk given on Internatinal coference on theoretical physics, april 11-16,2005, Mosco

    Kinetic energy change with doping upon superfluid condensation in high temperature superconductors

    Full text link
    In conventional BCS superconductors, the electronic kinetic energy increases upon superfluid condensation (the change DEkin is positive). Here we show that in the high critical temperature superconductor Bi-2212, DEkin crosses over from a fully compatible conventional BCS behavior (DEkin>0) to an unconventional behavior (DEkin<0) as the free carrier density decreases. If a single mechanism is responsible for superconductivity across the whole phase diagram of high critical temperature superconductors, this mechanism should allow for a smooth transition between such two regimes around optimal doping.Comment: 3 pages, 2 figure

    Observation of a two-dimensional electron gas at CaTiO3_3 film surfaces

    Get PDF
    The two-dimensional electron gas at the surface of titanates gathered attention due to its potential to replace conventional silicon based semiconductors in the future. In this study, we investigated films of the parent perovskite CaTiO3_3, grown by pulsed laser deposition, by means of angular-resolved photoelectron spectroscopy. The films show a c(4x2) surface reconstruction after the growth that is reduced to a p(2x2) reconstruction under UV-light. At the CaTiO3_3 film surface, a two-dimensional electron gas (2DEG) is found with an occupied band width of 400 meV. With our findings CaTiO3_3 is added to the group of oxides with a 2DEG at their surface. Our study widens the phase space to investigate strontium and barium doped CaTiO3_3 and the interplay of ferroelectric properties with the 2DEG at oxide surfaces. This could open up new paths to tailor two-dimensional transport properties of these systems towards possible applications

    Momentum-resolved evolution of the Kondo lattice into 'hidden-order' in URu2Si2

    Full text link
    We study, using high-resolution angle-resolved photoemission spectroscopy, the evolution of the electronic structure in URu2Si2 at the Gamma, Z and X high-symmetry points from the high-temperature Kondo-screened regime to the low-temperature `hidden-order' (HO) state. At all temperatures and symmetry points, we find structures resulting from the interaction between heavy and light bands, related to the Kondo lattice formation. At the X point, we directly measure a hybridization gap of 11 meV already open at temperatures above the ordered phase. Strikingly, we find that while the HO induces pronounced changes at Gamma and Z, the hybridization gap at X does not change, indicating that the hidden-order parameter is anisotropic. Furthermore, at the Gamma and Z points, we observe the opening of a gap in momentum in the HO state, and show that the associated electronic structure results from the hybridization of a light electron band with the Kondo-lattice bands characterizing the paramagnetic state.Comment: Updated published version. Mansucript + Supplemental Material (8 pages, 9 figures). Submitted 16 September 201

    Two-Fermi-surface superconducting state and a nodal d-wave gap in the electron-doped Sm(1.85)Ce(0.15)CuO(4-d) cuprate superconductor

    Full text link
    We report on laser-excited angle-resolved photoemission spectroscopy (ARPES) in the electron-doped cuprate Sm(1.85)Ce(0.15)CuO(4-d). The data show the existence of a nodal hole-pocket Fermi-surface both in the normal and superconducting states. We prove that its origin is long-range antiferromagnetism by an analysis of the coherence factors in the main and folded bands. This coexistence of long-range antiferromagnetism and superconductivity implies that electron-doped cuprates are two-Fermi-surface superconductors. The measured superconducting gap in the nodal hole-pocket is compatible with a d-wave symmetry.Comment: 4 pages, 3 figures, accepted to Phys. Rev. Let

    Magnetism, spin texture and in-gap states: Atomic specialization at the surface of oxygen-deficient SrTiO3_3

    Full text link
    Motivated by recent spin- and angular-resolved photoemission (SARPES) measurements performed on the two-dimensional electronic states confined near the (001) surface of SrTiO3_3 in the presence of oxygen vacancies, we explore their spin structure by means of ab initio density functional theory (DFT) calculations of slabs. Relativistic nonmagnetic DFT calculations display Rashba-like spin winding with a splitting of a few meV and when surface magnetism on the Ti ions is in- cluded, bands become spin-split with an energy difference ~100 meV at the Γ\Gamma point, consistent with SARPES findings. While magnetism tends to suppress the effects of the relativistic Rashba interaction, signatures of it are still clearly visible in terms of complex spin textures. Furthermore, we observe an atomic specialization phenomenon, namely, two types of electronic contributions: one is from Ti atoms neighboring the oxygen vacancies that acquire rather large magnetic moments and mostly create in-gap states; another comes from the partly polarized t2g_{2g} itinerant electrons of Ti atoms lying further away from the oxygen vacancy, which form the two-dimensional electron system and are responsible for the Rashba spin winding and the spin splitting at the Fermi surface.Comment: 6 pages, 4 figures, for Suppl. Mat. please contact first autho
    corecore