280 research outputs found

    New Institutional Economics: A state-of-the-art review for economic sociologists

    Full text link

    On thermalization in gamma-ray burst jets and the peak energies of photospheric spectra

    Full text link
    The low energy spectral slopes of the prompt emission of most gamma-ray bursts (GRBs) are difficult to reconcile with radiatively efficient optically thin emission models irrespective of the radiation mechanism. An alternative is to ascribe the radiation around the spectral peak to a thermalization process occurring well inside the Thomson photosphere. This quasi-thermal spectrum can evolve into the observed non-thermal shape by additional energy release at moderate to small Thomson optical depths, which can readily give rise to the hard spectral tail. The position of the spectral peak is determined by the temperature and Lorentz factor of the flow in the termalization zone, where the total number of photons carried by the jet is established. To reach thermalization, dissipation alone is not sufficient and photon generation requires an efficient emission/absorption process in addition to scattering. We perform a systematic study of all relevant photon production mechanisms searching for possible conditions in which thermalization can take place. We find that a significant fraction of the available energy should be dissipated at intermediate radii, 1010\sim 10^{10}-- a few×1011\times 10^{11} cm and the flow there should be relatively slow: the bulk Lorentz factor could not exceed a few tens for all but the most luminous bursts with the highest \Epk-s. The least restrictive constraint for successful thermalization, Γ20\Gamma\lesssim 20, is obtained if synchrotron emission acts as the photon source. This requires, however, a non-thermal acceleration deep below the Thomson photosphere transferring a significant fraction of the flow energy to relativistic electrons with Lorentz factors between 10 and 100. Other processes require bulk flow Lorentz factors of order of a few for typical bursts. We examine the implications of these results to different GRB photospheric emission models.Comment: 18 pages, 10 figures, accepted to Ap

    Polarization of X-ray lines from galaxy clusters and elliptical galaxies - a way to measure tangential component of gas velocity

    Full text link
    We study the impact of gas motions on the polarization of bright X-ray emission lines from the hot intercluster medium (ICM). The polarization naturally arises from resonant scattering of emission lines owing to a quadrupole component in the radiation field produced by a centrally peaked gas density distribution. If differential gas motions are present then a photon emitted in one region of the cluster will be scattered in another region only if their relative velocities are small enough and the Doppler shift of the photon energy does not exceed the line width. This affects both the degree and the direction of polarization. The changes in the polarization signal are in particular sensitive to the gas motions perpendicular to the line of sight. We calculate the expected degree of polarization for several patterns of gas motions, including a slow inflow expected in a simple cooling flow model and a fast outflow in an expanding spherical shock wave. In both cases, the effect of non-zero gas velocities is found to be minor. We also calculate the polarization signal for a set of clusters, taken from large-scale structure simulations and evaluate the impact of the gas bulk motions on the polarization signal. We argue that the expected degree of polarization is within reach of the next generation of space X-ray polarimeters.Comment: 25 pages, 18 figures, accepted to MNRA

    Boundary layer emission and Z-track in the color-color diagram of luminous LMXBs

    Full text link
    We demonstrate that Fourier-frequency resolved spectra of atoll and Z- sources are identical, despite significant difference in their average spectra and luminosity (by a factor of ~10-20). This result fits in the picture we suggested earlier, namely that the f> 1 Hz variability in luminous LMXBs is primarily due to variations of the boundary layer luminosity. In this picture the frequency resolved spectrum equals the boundary layer spectrum, which therefore can be straightforwardly determnined from the data. The obtained so boundary layer spectrum is well approximated by the saturated Comptonization model, its high energy cut-off follows kT~2.4 keV black body. Its independence on the global mass accretion rate lends support to the theoretical suggestion by Inogamov &Sunyaev (1999) that the boundary layer is radiation pressure supported. With this assumption we constrain the gravity on the neutron star surface and its mass and radius. Equipped with the knowledge of the boundary layer spectrum we attempt to relate the motion along the Z-track to changes of physically meaningful parameters. Our results suggest that the contribution of the boundary layer to the observed emission decreases along the Z-track from conventional ~50% on the horizontal branch to a rather small number on the normal branch. This decrease can be caused, for example, by obscuration of the boundary layer by the geometrically thick accretion disk at Mdot ~ Mdot_Edd. Alternatively, this can indicate significant change of the structure of the accretion flow at Mdot ~ Mdot_ Edd and disappearance of the boundary layer as a distinct region of the significant energy release associated with the neutron star surface.Comment: 9 pages, 7 figures, Accepted in A&

    High resolution soft X-ray spectroscopy of the elliptical galaxy NGC 5044. Results from the reflection grating spectrometer on-board XMM-Newton

    Get PDF
    The results from an X-ray spectroscopic study of the giant elliptical galaxy NGC5044 in the center of a galaxy group are presented. The line dominated soft X-ray spectra (mainly Fe-L and O VIII Ly_a) from the diffuse gas are resolved for the first time in this system with the Reflection Grating Spectrometers on-board XMM-Newton and provide a strong constraint on the temperature structure. The spectra integrated over 2' (\sim 20kpc) in full-width can be described by a two temperature plasma model of 0.7keV and 1.1keV. Most of the latter component is consistent with originating from off-center regions. Compared to the isobaric cooling flow prediction, the observation shows a clear cut-off below a temperature of 0.6 +-0.1keV. Furthermore, the Fe and O abundances within the central 10--20kpc in radius are accurately measured to be 0.55+-0.05 and 0.25+-0.1 times the solar ratios, respectively. The observed cut-off temperature of this galaxy and other central galaxies in galaxy groups and clusters are compared with the scale of the galaxy and properties of the surrounding intra-cluster medium. Based on this comparison, the origin of the lack of predicted cool emission is discussed.Comment: Accepted for publication in Astronomy & Astrophysic

    Does Bose-Einstein condensation of CMB photons cancel {\mu} distortions created by dissipation of sound waves in the early Universe?

    Full text link
    The difference in the adiabatic indices of photons and non-relativistic baryonic matter in the early Universe causes the electron temperature to be slightly lower than the radiation temperature. Thermalization of photons with a colder plasma results in the accumulation of photons in the Rayleigh-Jeans tail, aided by stimulated recoil, while the higher frequency spectrum tries to approach Planck spectrum at the electron temperature T_{\gamma}^{final}=\Te; i.e., Bose-Einstein condensation of photons occurs. We find new solutions of the Kompaneets equation describing this effect. No actual condensate is, in reality, possible since the process is very slow and photons drifting to low frequencies are efficiently absorbed by bremsstrahlung and double Compton processes. The spectral distortions created by Bose-Einstein condensation of photons are within an order of magnitude (for the present range of allowed cosmological parameters), with exactly the same spectrum but opposite in sign, of those created by diffusion damping of the acoustic waves on small scales corresponding to comoving wavenumbers 45<k<104Mpc145< k< 10^4\, Mpc^{-1}. The initial perturbations on these scales are completely unobservable today due to their being erased completely by Silk damping. There is partial cancellation of these two distortions, leading to suppression of μ\mu distortions expected in the standard model of cosmology. The net distortion depends on the scalar power index nSn_S and its running dnS/dlnkd n_S/d\ln k, and may vanish for special values of parameters, for example, for a running spectrum with, nS=1,dnS/dlnk=0.038n_S=1,d n_S/d\ln k=-0.038. We arrive at an intriguing conclusion: even a null result, non-detection of μ\mu-type distortion at a sensitivity of 10910^{-9}, gives a quantitative measure of the primordial small-scale power spectrum.Comment: Published versio

    Dust in Supernovae and Supernova Remnants I : Formation Scenarios

    Get PDF
    Supernovae are considered as prime sources of dust in space. Observations of local supernovae over the past couple of decades have detected the presence of dust in supernova ejecta. The reddening of the high redshift quasars also indicate the presence of large masses of dust in early galaxies. Considering the top heavy IMF in the early galaxies, supernovae are assumed to be the major contributor to these large amounts of dust. However, the composition and morphology of dust grains formed in a supernova ejecta is yet to be understood with clarity. Moreover, the dust masses inferred from observations in mid-infrared and submillimeter wavelength regimes differ by two orders of magnitude or more. Therefore, the mechanism responsible for the synthesis of molecules and dust in such environments plays a crucial role in studying the evolution of cosmic dust in galaxies. This review summarises our current knowledge of dust formation in supernova ejecta and tries to quantify the role of supernovae as dust producers in a galaxy.Peer reviewe

    Cosmological Hydrogen Recombination: influence of resonance and electron scattering

    Full text link
    In this paper we consider the effects of resonance and electron scattering on the escape of Lyman alpha photons during cosmological hydrogen recombination. We pay particular attention to the influence of atomic recoil, Doppler boosting and Doppler broadening using a Fokker-Planck approximation of the redistribution function describing the scattering of photons on the Lyman alpha resonance of moving hydrogen atoms. We extend the computations of our recent paper on the influence of the 3d/3s-1s two-photon channels on the dynamics of hydrogen recombination, simultaneously including the full time-dependence of the problem, the thermodynamic corrections factor, leading to a frequency-dependent asymmetry between the emission and absorption profile, and the quantum-mechanical corrections related to the two-photon nature of the 3d/3s-1s emission and absorption process on the exact shape of the Lyman alpha emission profile. We show here that due to the redistribution of photons over frequency hydrogen recombination is sped up by DN_e/N_e~-0.6% at z~900. For the CMB temperature and polarization power spectra this results in |DC_l/C_l|~0.5%-1% at l >~ 1500, and therefore will be important for the analysis of future CMB data in the context of the PLANCK Surveyor, SPT and ACT. The main contribution to this correction is coming from the atomic recoil effect (DN_e/N_e~-1.2% at z~900), while Doppler boosting and Doppler broadening partially cancel this correction, again slowing hydrogen recombination down by DN_e/N_e~0.6% at z~900. The influence of electron scattering close to the maximum of the Thomson visibility function at z~1100 can be neglected. (abridged)Comment: 11 pages, 13 figures, submitted to A&
    corecore