611 research outputs found
Getting the astrophysics and particle physics of dark matter out of next-generation direct detection experiments
The next decade will bring massive new data sets from experiments of the
direct detection of weakly interacting massive particle (WIMP) dark matter. The
primary goal of these experiments is to identify and characterize the
dark-matter particle species. However, mapping the data sets to the
particle-physics properties of dark matter is complicated not only by the
considerable uncertainties in the dark-matter model, but by its poorly
constrained local distribution function (the "astrophysics" of dark matter). In
this Letter, I propose a shift in how to do direct-detection data analysis. I
show that by treating the astrophysical and particle physics uncertainties of
dark matter on equal footing, and by incorporating a combination of data sets
into the analysis, one may recover both the particle physics and astrophysics
of dark matter. Not only does such an approach yield more accurate estimates of
dark-matter properties, but may illuminate how dark matter coevolves with
galaxies.Comment: 4 pages, 4 figures, replaced to match version accepted by Phys. Rev.
SBND: Status of the Fermilab Short-Baseline Near Detector
SBND (Short-Baseline Near Detector) will be a 112 ton liquid argon TPC neutrino detector located 110m from the target of the Fermilab Booster Neutrino Beam. SBND, together with the MicroBooNE and ICARUS-T600 detectors at 470m and 600m, respectively, make up the Fermilab Short-Baseline Neutrino (SBN) Program. SBN will search for new physics in the neutrino sector by testing the sterile neutrino hypothesis in the 1 eV 2 mass-squared region with unrivaled sensitivity. SBND will measure the un-oscillated beam flavor composition to enable precision searches for neutrino oscillations via both electron neutrino appearance and muon neutrino disappearance in the far detectors. With a data sample of millions of neutrino interactions (both electron and muon neutrinos), SBND will also perform detailed studies of the physics of neutrino-argon interactions, even in rare channels. In addition, SBND plays an important role in an on-going R & D effort within neutrino physics to develop the LArTPC technology toward many-kiloton-scale detectors for next generation long-baseline neutrino oscillation experiments. The design details and current status of the detector is presented here
A New Light Higgs Boson and Short-Baseline Neutrino Anomalies
The low-energy excesses observed by the MiniBooNE experiment have, to date,
defied a convinc- ing explanation under the standard model even with
accommodation for non-zero neutrino mass. In this paper we explore a new
oscillation mechanism to explain these anomalies, invoking a light neu-
trinophilic Higgs boson, conceived to induce a low Dirac neutrino mass in
accord with experimental limits. Beam neutrinos forward-scattering off of a
locally over-dense relic neutrino background give rise to a novel matter-effect
with an energy-specific resonance. An enhanced oscillation around this
resonance peak produces flavor transitions which are highly consistent with the
MiniBooNE neutrino- and antineutrino-mode data sets. The model provides
substantially improved values beyond either the no-oscillation
hypothesis or the more commonly explored 3+1 sterile neutrino hy- pothesis.
This mechanism would introduce distinctive signatures at each baseline in the
upcoming SBN program at Fermilab, presenting opportunities for further
exploration.Comment: 11 pages, 6 figures, submitted to PR
theory and geometric origin of the dark sector in Horava-Lifshitz gravity
Inclusion of term in the action of Horava-Lifshitz quantum gravity
with projectability but without detailed balance condition is investigated,
where denotes the 3-spatial dimensional Ricci scalar. Conditions for the
spin-0 graviton to be free of ghosts and instability are studied. The
requirement that the theory reduce to general relativity in the IR makes the
scalar mode unstable in the Minkowski background but stable in the de Sitter.
It is remarkable that the dark sector, dark matter and dark energy, of the
universe has a naturally geometric origin in such a setup. Bouncing universes
can also be constructed. Scalar perturbations in the FRW backgrounds with
non-zero curvature are presented.Comment: Mod. Phys. Lett. A26, 387-398 (2011
Demonstration and Comparison of Operation of Photomultiplier Tubes at Liquid Argon Temperature
Liquified noble gases are widely used as a target in direct Dark Matter
searches. Signals from scintillation in the liquid, following energy deposition
from the recoil nuclei scattered by Dark Matter particles (e.g. WIMPs), should
be recorded down to very low energies by photosensors suitably designed to
operate at cryogenic temperatures. Liquid Argon based detectors for Dark Matter
searches currently implement photo multiplier tubes for signal read-out. In the
last few years PMTs with photocathodes operating down to liquid Argon
temperatures (87 K) have been specially developed with increasing Quantum
Efficiency characteristics. The most recent of these, Hamamatsu Photonics Mod.
R11065 with peak QE up to about 35%, has been extensively tested within the R&D
program of the WArP Collaboration. During these testes the Hamamatsu PMTs
showed superb performance and allowed obtaining a light yield around 7
phel/keVee in a Liquid Argon detector with a photocathodic coverage in the 12%
range, sufficient for detection of events down to few keVee of energy
deposition. This shows that this new type of PMT is suited for experimental
applications, in particular for new direct Dark Matter searches with LAr-based
experiments
The detection of back-to-back proton pairs in Charged-Current neutrino interactions with the ArgoNeuT detector in the NuMI low energy beam line
Short range nucleon-nucleon correlations in nuclei (NN SRC) carry important
information on nuclear structure and dynamics. NN SRC have been extensively
probed through two-nucleon knock- out reactions in both pion and electron
scattering experiments. We report here on the detection of two-nucleon
knock-out events from neutrino interactions and discuss their topological
features as possibly involving NN SRC content in the target argon nuclei. The
ArgoNeuT detector in the Main Injector neutrino beam at Fermilab has recorded a
sample of 30 fully reconstructed charged current events where the leading muon
is accompanied by a pair of protons at the interaction vertex, 19 of which have
both protons above the Fermi momentum of the Ar nucleus. Out of these 19
events, four are found with the two protons in a strictly back-to-back high
momenta configuration directly observed in the final state and can be
associated to nucleon Resonance pionless mechanisms involving a pre-existing
short range correlated np pair in the nucleus. Another fraction (four events)
of the remaining 15 events have a reconstructed back-to-back configuration of a
np pair in the initial state, a signature compatible with one-body Quasi
Elastic interaction on a neutron in a SRC pair. The detection of these two
subsamples of the collected (mu- + 2p) events suggests that mechanisms directly
involving nucleon-nucleon SRC pairs in the nucleus are active and can be
efficiently explored in neutrino-argon interactions with the LAr TPC
technology
The ArgoNeuT Detector in the NuMI Low-Energy beam line at Fermilab
The ArgoNeuT liquid argon time projection chamber has collected thousands of
neutrino and antineutrino events during an extended run period in the NuMI
beam-line at Fermilab. This paper focuses on the main aspects of the detector
layout and related technical features, including the cryogenic equipment, time
projection chamber, read-out electronics, and off-line data treatment. The
detector commissioning phase, physics run, and first neutrino event displays
are also reported. The characterization of the main working parameters of the
detector during data-taking, the ionization electron drift velocity and
lifetime in liquid argon, as obtained from through-going muon data complete the
present report.Comment: 43 pages, 27 figures, 5 tables - update referenc
- …
