657 research outputs found

    Long-lived non-thermal states realized by atom losses in one-dimensional quasi-condensates

    Get PDF
    We investigate the cooling produced by a loss process non selective in energy on a one-dimensional (1D) Bose gas with repulsive contact interactions in the quasi-condensate regime. By performing nonlinear classical field calculations for a homogeneous system, we show that the gas reaches a non-thermal state where different modes have acquired different temperatures. After losses have been turned off, this state is robust with respect to the nonlinear dynamics, described by the Gross-Pitaevskii equation. We argue that the integrability of the Gross-Pitaevskii equation is linked to the existence of such long-lived non-thermal states, and illustrate this by showing that such states are not supported within a non-integrable model of two coupled 1D gases of different masses. We go beyond a classical field analysis, taking into account the quantum noise introduced by the discreteness of losses, and show that the non-thermal state is still produced and its non-thermal character is even enhanced. Finally, we extend the discussion to gases trapped in a harmonic potential and present experimental observations of a long-lived non-thermal state within a trapped 1D quasi-condensate following an atom loss process

    Continuous measurement feedback control of a Bose-Einstein condensate using phase contrast imaging

    Full text link
    We consider the theory of feedback control of a Bose-Einstein condensate (BEC) confined in a harmonic trap under a continuous measurement constructed via non-destructive imaging. A filtering theory approach is used to derive a stochastic master equation (SME) for the system from a general Hamiltonian based upon system-bath coupling. Numerical solutions for this SME in the limit of a single atom show that the final steady state energy is dependent upon the measurement strength, the ratio of photon kinetic energy to atomic kinetic energy, and the feedback strength. Simulations indicate that for a weak measurement strength, feedback can be used to overcome heating introduced by the scattering of light, thereby allowing the atom to be driven towards the ground state.Comment: 4 figures, 11 page

    Ab initio Wannier-function-based correlated calculations of Born effective charges of crystalline Li2_{2}O and LiCl

    Full text link
    In this paper we have used our recently developed ab initio Wannier-function-based methodology to perform extensive Hartree-Fock and correlated calculations on Li2_{2}O and LiCl to compute their Born effective charges. Results thus obtained are in very good agreement with the experiments. In particular, for the case of Li2_{2}O, we resolve a controversy originating in the experiment of Osaka and Shindo {[}Solid State Commun. 51 (1984) 421] who had predicted the effective charge of Li ions to be in the range 0.58--0.61, a value much smaller compared to its nominal value of unity, thereby, suggesting that the bonding in the material could be partially covalent. We demonstrate that effective charge computed by Osaka and Shindo is the Szigeti charge, and once the Born charge is computed, it is in excellent agreement with our computed value. Mulliken population analysis of Li2_{2}O also confirms ionic nature of the bonding in the substance.Comment: 11 pages, 1 figure. To appear in Phys. Rev. B (Feb 2008

    Quantum tunneling dynamics of an interacting Bose-Einstein condensate through a Gaussian barrier

    Full text link
    The transmission of an interacting Bose-Einstein condensate incident on a repulsive Gaussian barrier is investigated through numerical simulation. The dynamics associated with interatomic interactions are studied across a broad parameter range not previously explored. Effective 1D Gross-Pitaevskii equation (GPE) simulations are compared to classical Boltzmann-Vlasov equation (BVE) simulations in order to isolate purely coherent matterwave effects. Quantum tunneling is then defined as the portion of the GPE transmission not described by the classical BVE. An exponential dependence of transmission on barrier height is observed in the purely classical simulation, suggesting that observing such exponential dependence is not a sufficient condition for quantum tunneling. Furthermore, the transmission is found to be predominately described by classical effects, although interatomic interactions are shown to modify the magnitude of the quantum tunneling. Interactions are also seen to affect the amount of classical transmission, producing transmission in regions where the non-interacting equivalent has none. This theoretical investigation clarifies the contribution quantum tunneling makes to overall transmission in many-particle interacting systems, potentially informing future tunneling experiments with ultracold atoms.Comment: Close to the published versio

    Integrating process design and control: An application of optimal control to chemical processes

    Get PDF
    In this paper, the optimal design of process systems generically used in chemical industries is studied. The closely coupled nature of optimal design specification of the equipment, the determination of the optimal process parameters in steady-state, moreover, some issues of the application of optimal control is shown. The solution of the overall optimization problem including (i) optimal design of the equipment and (ii) specification of its optimal control strategy can be found relying on two different design concepts, namely, on the conventionally used sequential or, on the newly emerged simultaneous design approaches. This paper gives the theoretical background of the ideas and presents a comparative summary of the approaches. The two approaches are contrasted to each other in which the effects of the interaction of optimal process design and optimal control is highlighted. A new simultaneous optimization procedure providing economic and operability benefits over the traditional stand-alone approach is proposed. The applicability of the idea is demonstrated by means of a design study carried out for optimal design of a coaxial heat exchanger and a reactive distillation column for the synthesis of ethyl tert butyl ether (ETBE), relying on the benefits of the utilization of optimal control

    Intensity profiles of superdeformed bands in Pb isotopes in a two-level mixing model

    Get PDF
    A recently developed two-level mixing model of the decay out of superdeformed bands is applied to examine the loss of flux from the yrast superdeformed bands in Pb192, Pb194, and Pb196. Probability distributions for decay to states at normal deformations are calculated at each level. The sensitivity of the results to parameters describing the levels at normal deformation and their coupling to levels in the superdeformed well is explored. It is found that except for narrow ranges of the interaction strength coupling the states, the amount of intensity lost is primarily determined by the ratio of γ decay widths in the normal and superdeformed wells. It is also found that while the model can accommodate the observed fractional intensity loss profiles for decay from bands at relatively high excitation, it cannot accommodate the similarly abrupt decay from bands at lower energies if standard estimates of the properties of the states in the first minimum are employed

    Precision atomic gravimeter based on Bragg diffraction

    Get PDF
    We present a precision gravimeter based on coherent Bragg diffraction of freely falling cold atoms. Traditionally, atomic gravimeters have used stimulated Raman transitions to separate clouds in momentum space by driving transitions between two internal atomic states. Bragg interferometers utilize only a single internal state, and can therefore be less susceptible to environmental perturbations. Here we show that atoms extracted from a magneto-optical trap using an accelerating optical lattice are a suitable source for a Bragg atom interferometer, allowing efficient beamsplitting and subsequent separation of momentum states for detection. Despite the inherently multi-state nature of atom diffraction, we are able to build a Mach-Zehnder interferometer using Bragg scattering which achieves a sensitivity to the gravitational acceleration of Δg/g=2.7×109\Delta g/g = 2.7\times10^{-9} with an integration time of 1000s. The device can also be converted to a gravity gradiometer by a simple modification of the light pulse sequence.Comment: 13 pages, 11 figure

    Heisenberg-limited metrology with information recycling

    Get PDF
    Information recycling has been shown to improve the sensitivity of atom interferometers by exploiting atom-light entanglement. In this Rapid Communication, we apply information recycling to an interferometer where the input quantum state has been partially transferred from some donor system. We demonstrate that when the quantum state of this donor system is from a particular class of number-correlated Heisenberg-limited states, information recycling yields a Heisenberg-limited phase measurement. Crucially, this result holds irrespective of the fraction of the quantum state transferred to the interferometer input and also for a general class of number-conserving quantum-state-transfer processes, including ones that destroy the first-order phase coherence between the branches of the interferometer. This result could have significant applications in Heisenberg-limited atom interferometry, where the quantum state is transferred from a Heisenberg-limited photon source, and in optical interferometry where the loss can be monitored

    Feedback control of an interacting Bose-Einstein condensate using phase-contrast imaging

    Get PDF
    The linewidth of an atom laser is limited by density fluctuations in the Bose-Einstein condensate (BEC) from which the atom laser beam is outcoupled. In this paper we show that a stable spatial mode for an interacting BEC can be generated using a realistic control scheme that includes the effects of the measurement backaction. This model extends the feedback theory, based on a phase-contrast imaging setup, presented by Szigeti, Hush, Carvalho, and Hope [Phys. Rev. APLRAAN1050-294710.1103/PhysRevA.80.013614 80, 013614 (2009)]. In particular, it is applicable to a BEC with large interatomic interactions and solves the problem of inadequacy of the mean-field (coherent state) approximation by utilizing a fixed number state approximation. Our numerical analysis shows the control to be more effective for a condensate with a large nonlinearity
    corecore