30,733 research outputs found
Modelling the temperature, maturity and moisture content in a drying concrete block
In this paper we continue work from a previous Study Group in developing a model for the maturation of concrete. The model requires equations describing the temperature, moisture content and maturity (or amount of cement that has reacted with the water). Non-dimensionalisation is used to simplify the model and provide simple analytical solutions which are valid for early time maturation. A numerical scheme is also developed and simulations carried out for maturation over one day and then two months. For the longer simulation we also investigate the effect of building the block in a single pour or two stages
An Improved Measurement of the Hubble Constant from the Sunyaev-Zeldovich Effect
We present a determination of the Hubble constant from measurements of the
Sunyaev-Zeldovich Effect (SZE) in an orientation-unbiased sample of 7 z < 0.1
galaxy clusters. With improved X-ray models and a more accurate 32-GHz
calibration, we obtain H_O = 64+14-11 +/- 14_sys km/s/Mpc. for a standard CDM
cosmology, or 66+14-11 +/- 15_sys km/s/Mpc for a flat LambdaCDM cosmology. In
combination with X-ray cluster measurements and the BBN value for Omega_B, we
find Omega_M = 0.32 +/- 0.05.Comment: 5 pp., Accepted for publication in ApJ
An equation of state for oxygen and nitrogen
Preliminary equations of state are presented for oxygen and nitrogen which provide accurate representations of the available P-density-T data for both fluids. The equation for nitrogen is applicable for temperatures from 70 K to 1300 K at pressures to 10,000 atmospheres, and the equation for oxygen for temperatures from 70 K to 323 K at pressures to 350 atmospheres. Deviations of calculated densities from representative experimental data are included. A volume-explicit equation of state for oxygen to be used in estimating density values in the range of applicability of the equation of state is also presented
The thermodynamic properties of oxygen and nitrogen. Part 1: Thermodynamic properties of nitrogen from 115 R to 3500 R with pressures to 150000 psia
An equation of state is presented for liquid and gaseous nitrogen for temperatures from 115 R to 3500 R and pressures to 150,000 psia. All of the pressure-density-temperature data available from the published literature have been reviewed, and appropriate corrections have been identified and applied to bring experimental temperatures into accord with the International Practical Temperature Scale of 1968. Comparisons of property values calculated from the equation of state to measured values are included to illustrate the accuracy of the equation in representing the data. The coefficients of the equation of state were determined by a weighted least squares fit to selected published data and, simultaneously, to constant volume data determined by corresponding states analysis from oxygen data, and to data which define the phase equilibrium criteria for the saturated liquid and saturated vapor. The methods of weighting the various data for simultaneous fitting are presented and discussed. The equation of state is estimated to be accurate to within 0.5 percent in the liquid region, to within 0.1 percent for supercritical isotherms up to 15,000 psia, and to within 0.3 percent from 15,000 to 150,000 psia
An equation of state for oxygen and nitrogen
Recent measurements of thermodynamic properties of oxygen and nitrogen have provided data necessary for development of a single equation of state for both fluids. Data are available in summary report and two-part detailed study on thermodynamic properties of oxygen and nitrogen. Same data are used to develop vapor-pressure equation and heat-capacity equation
Peak Ventilation Reference Standards from Exercise Testing: From the FRIEND Registry
Peak Ventilation Reference Standards from Exercise Testing: From the FRIEND Registry. Med. Sci. Sports Exerc., Vol. 50, No. 12, pp. 2603–2608, 2018. Purpose: Cardiopulmonary exercise testing (CPX) provides valuable clinical information, including peak ventilation (V˙ Epeak), which has been shown to have diagnostic and prognostic value in the assessment of patients with underlying pulmonary disease. This report provides reference standards for V˙ Epeak derived from CPX on treadmills in apparently healthy individuals. Methods: Nine laboratories in the United States experienced in CPX administration with established quality control procedures contributed to the Fitness Registry and the Importance of Exercise National Database from 2014 to 2017. Data from 5232 maximal exercise tests from men and women without cardiovascular or pulmonary disease were used to create percentiles ofV˙ Epeak for both men and women by decade between 20 and 79 yr. Additionally, prediction equations were developed for V˙ Epeak using descriptive information. Results: V˙ Epeak was found to be significantly different between men and women and across age groups (P G 0.05). The rate of decline in V˙ Epeak was 8.0% per decade for both men and women. A stepwise regression model of 70% of the sample revealed that sex, age, and height were significant predictors ofV˙ Epeak. The equation was cross-validated with data from the remaining 30% of the sample with a final equation developed from the full sample (r = 0.73). Additionally, a linear regression model revealed forced expiratory volume in 1 s significantly predicted V˙ Epeak (r = 0.73). Conclusions: Reference standards were developed for V˙ Epeak for the United States population. Cardiopulmonary exercise testing laboratories will be able to provide interpretation of V˙ Epeak from these age and sex-specific percentile reference values or alternatively can use these nonexercise prediction equations incorporating sex, age, and height or with a single predictor of forced expiratory volume in 1 s
The thermodynamic properties of oxygen and nitrogen. Part 2: Thermodynamic properties of oxygen from 100 R to 600 R with pressure to 5000 psia
An equation of state is presented for liquid and gaseous oxygen for temperatures from 100 R to 600 R and pressures to 5000 psia. The pressure-density-temperature data available from the published literature have been reviewed, and appropriate corrections have been applied to bring experimental temperatures into accord with the International Practical Temperature Scale of 1968. Representative comparisons of property values calculated from the equation of state to measured values are included to illustrate the accuracy of the equation of state. The coefficients of the equation of state were determined by a weighted least squares fit to selected published data, and simultaneously to isochoric heat capacity data, and to data which define the phase equilibrium for the saturated liquid and saturated vapor. The equation of state is estimated to be accurate for the liquid to within 0.1 percent in density, to within 0.2 percent for the vapor below the critical temperature and for states above the critical temperatures to 250 K, and within 0.1 percent for supercritical states at temperatures from 250 K to 300 K. The vapor pressure equation is accurate to within + or - 0.01 K between the triple point and the critical point
Electrical characterization of a Mapham inverter using pulse testing techniques
Electric power requirements for aerospace missions have reached megawatt power levels. Within the next few decades, it is anticipated that a manned lunar base, interplanetary travel, and surface exploration of the Martian surface will become reality. Several research and development projects aimed at demonstrating megawatt power level converters for space applications are currently underway at the NASA Lewis Research Center. Innovative testing techniques will be required to evaluate the components and converters, when developed, at their rated power in the absence of costly power sources, loads, and cooling systems. Facilities capable of testing these components and systems at full power are available, but their use may be cost prohibitive. The use of a multiple pulse testing technique is proposed to determine the electrical characteristics of large megawatt level power systems. Characterization of a Mapham inverter is made using the proposed technique and conclusions are drawn concerning its suitability as an experimental tool to evaluate megawatt level power systems
Clustering on very small scales from a large sample of confirmed quasar pairs: Does quasar clustering track from Mpc to kpc scales?
We present the most precise estimate to date of the clustering of quasars on
very small scales, based on a sample of 47 binary quasars with magnitudes of
and proper transverse separations of \,kpc. Our
sample of binary quasars, which is about 6 times larger than any previous
spectroscopically confirmed sample on these scales, is targeted using a Kernel
Density Estimation technique (KDE) applied to Sloan Digital Sky Survey (SDSS)
imaging over most of the SDSS area. Our sample is "complete" in that all of the
KDE target pairs with \,kpc in our area
of interest have been spectroscopically confirmed from a combination of
previous surveys and our own long-slit observational campaign. We catalogue 230
candidate quasar pairs with angular separations of <8\arcsec, from which our
binary quasars were identified. We determine the projected correlation function
of quasars () in four bins of proper transverse scale over the
range \,kpc. The implied small-scale
quasar clustering amplitude from the projected correlation function, integrated
across our entire redshift range, is at \,kpc. Our sample is the first spectroscopically confirmed sample of
quasar pairs that is sufficiently large to study how quasar clustering evolves
with redshift at kpc. We find that empirical descriptions of
how quasar clustering evolves with redshift at Mpc also
adequately describe the evolution of quasar clustering at
kpc.Comment: 16 pages, 8 figures, 6 tables, Accepted for publication in MNRA
- …
