28,457 research outputs found

    Correlations of a bound interface over a random substrate

    Full text link
    The correlation function of a one-dimensional interface over a random substrate, bound to the substrate by a pressure term, is studied by Monte-Carlo simulation. It is found that the height correlation , averaged over the substrate disorder, fits a form exp(-(j/b)^c) to a surprising precision in the full range of j where the correlation is non-negligible. The exponent c increases from 1.0 to 1.5 when the interface tension is taken larger and larger.Comment: 7 pages, 5 figure

    Hierarchical Bayesian Modeling of Hitting Performance in Baseball

    Full text link
    We have developed a sophisticated statistical model for predicting the hitting performance of Major League baseball players. The Bayesian paradigm provides a principled method for balancing past performance with crucial covariates, such as player age and position. We share information across time and across players by using mixture distributions to control shrinkage for improved accuracy. We compare the performance of our model to current sabermetric methods on a held-out season (2006), and discuss both successes and limitations

    Bhashaposhini Suchika (1977 –1992) [ഭാഷാപോഷിണി സൂചിക 1971-1992]

    Get PDF
    The journal Bhashaposhini is an authentic source for stdueis and research in areas of Malayalam literature, history and culture. It started publication in 1987 and after completion of 49 volumes ceased publication in 1942. It was revived from 1977 as a bimonthly. The present work is an index to the articles published in Bhashaposhini from 1977 to 1992 (New Volumes 1-16). Being an authentic knowledge source for regional studies and research, the need for an index to Bhashaposhini was strongly felt. The index has been classified under two major heads – Literature and Science. All articles other than literature are grouped under science

    The price of poor pandemic communication.

    Get PDF
    published_or_final_versio

    Radio detection of cosmic rays in the Pierre Auger Observatory

    Full text link
    In small-scale experiments such as CODALEMA and LOPES, radio detection of cosmic rays has demonstrated its potential as a technique for cosmic ray measurements up to the highest energies. Radio detection promises measurements with high duty-cycle, allows a direction reconstruction with very good angular resolution, and provides complementary information on energy and nature of the cosmic ray primaries with respect to particle detectors at ground and fluorescence telescopes. Within the Pierre Auger Observatory, we tackle the technological and scientific challenges for an application of the radio detection technique on large scales. Here, we report on the results obtained so far using the Southern Auger site and the plans for an engineering array of radio detectors covering an area of ~20 km^2.Comment: 4 pages, Proceedings of the 11th Pisa Meeting on Advanced Detector

    Rank Maximal Matchings -- Structure and Algorithms

    Full text link
    Let G = (A U P, E) be a bipartite graph where A denotes a set of agents, P denotes a set of posts and ranks on the edges denote preferences of the agents over posts. A matching M in G is rank-maximal if it matches the maximum number of applicants to their top-rank post, subject to this, the maximum number of applicants to their second rank post and so on. In this paper, we develop a switching graph characterization of rank-maximal matchings, which is a useful tool that encodes all rank-maximal matchings in an instance. The characterization leads to simple and efficient algorithms for several interesting problems. In particular, we give an efficient algorithm to compute the set of rank-maximal pairs in an instance. We show that the problem of counting the number of rank-maximal matchings is #P-Complete and also give an FPRAS for the problem. Finally, we consider the problem of deciding whether a rank-maximal matching is popular among all the rank-maximal matchings in a given instance, and give an efficient algorithm for the problem

    Lorentz Violation for Photons and Ultra-High Energy Cosmic Rays

    Full text link
    Lorentz symmetry breaking at very high energies may lead to photon dispersion relations of the form omega^2=k^2+xi_n k^2(k/M_Pl)^n with new terms suppressed by a power n of the Planck mass M_Pl. We show that first and second order terms of size xi_1 > 10^(-14) and xi_2 < -10^(-6), respectively, would lead to a photon component in cosmic rays above 10^(19) eV that should already have been detected, if corresponding terms for electrons and positrons are significantly smaller. This suggests that Lorentz invariance breakings suppressed up to second order in the Planck scale are unlikely to be phenomenologically viable for photons.Comment: 4 revtex pages, 3 postscript figures included, version published in PR

    Apparent first-order wetting and anomalous scaling in the two-dimensional Ising model

    Get PDF
    The global phase diagram of wetting in the two-dimensional (2d) Ising model is obtained through exact calculation of the surface excess free energy. Besides a surface field for inducing wetting, a surface-coupling enhancement is included. The wetting transition is critical (second order) for any finite ratio of surface coupling J_s to bulk coupling J, and turns first order in the limit J_s/J to infinity. However, for J_s/J much larger than 1 the critical region is exponentially small and practically invisible to numerical studies. A distinct pre-asymptotic regime exists in which the transition displays first-order character. Surprisingly, in this regime the surface susceptibility and surface specific heat develop a divergence and show anomalous scaling with an exponent equal to 3/2.Comment: This new version presents the exact solution and its properties whereas the older version was based on an approximate numerical study of the mode
    corecore