291 research outputs found

    The Self-Dual String and Anomalies in the M5-brane

    Full text link
    We study the anomalies of a charge Q2Q_2 self-dual string solution in the Coulomb branch of Q5Q_5 M5-branes. Cancellation of these anomalies allows us to determine the anomaly of the zero-modes on the self-dual string and their scaling with Q2Q_2 and Q5Q_5. The dimensional reduction of the five-brane anomalous couplings then lead to certain anomalous couplings for D-branes.Comment: 13 pages, Harvmac, refs adde

    U-duality covariant membranes

    Full text link
    We outline a formulation of membrane dynamics in D=8 which is fully covariant under the U-duality group SL(2,Z) x SL(3,Z), and encodes all interactions to fields in the eight-dimensional supergravity, which is constructed through Kaluza-Klein reduction on T^3. Among the membrane degrees of freedom is an SL(2,R) doublet of world-volume 2-form potentials, whose quantised electric fluxes determine the membrane charges, and are conjectured to provide an interpretation of the variables occurring in the minimal representation of E_{6(6)} which appears in the context of automorphic membranes. We solve the relevant equations for the action for a restricted class of supergravity backgrounds. Some comments are made on supersymmetry and lower dimensions.Comment: LaTeX, 21 pages. v2: Minor changes in text, correction of a sign. v3: some changes in text, a sign convention changed; version to appear in JHE

    On the equivalence of bound state solutions

    Full text link
    In this paper we show the equivalence of various (non-threshold) bound state solutions of branes, or equivalently branes in background potentials, in ten- and eleven-dimensional supergravity. We compare solutions obtained in two very different ways. One method uses a zero mode analysis to make an Ansatz which makes it possible to solve the full non-linear supergravity equations. The other method utilises T-duality techniques to turn on the fields on the brane. To be specific, in eleven dimensions we show the equivalence for the (M2,M5) bound state, or equivalently an M5-brane in a C_3 field, where we also consider the (MW,M2,M2',M5) solution, which can be obtained from the (M2,M5) bound state by a boost. In ten dimensions we show the equivalence for the ((F,D1),D3) bound state as well as the bound states of (p,q) 5-branes with lower dimensional branes in type IIB, corresponding to D3-branes in B_2 and C_2 fields and (p,q) 5-branes in B_2, C_2 and C_4 fields. We also comment on the recently proposed V-duality related to infinitesimally boosted solutions.Comment: 19 pages, LaTe

    D-branes in Generalized Geometry and Dirac-Born-Infeld Action

    Full text link
    The purpose of this paper is to formulate the Dirac-Born-Infeld (DBI) action in a framework of generalized geometry and clarify its symmetry. A D-brane is defined as a Dirac structure where scalar fields and gauge field are treated on an equal footing in a static gauge. We derive generalized Lie derivatives corresponding to the diffeomorphism and B-field gauge transformations and show that the DBI action is invariant under non-linearly realized symmetries for all types of diffeomorphisms and B-field gauge transformations. Consequently, we can interpret not only the scalar field but also the gauge field on the D-brane as the generalized Nambu-Goldstone boson.Comment: 32 pages, 4 figures, ver2:typos corrected, references adde

    Time-Dependent Warping, Fluxes, and NCYM

    Get PDF
    We describe the supergravity solutions dual to D6-branes with both time-dependent and time-independent B-fields. These backgrounds generalize the Taub-NUT metric in two key ways: they have asymmetric warp factors and background fluxes. In the time-dependent case, the warping takes a novel form. Kaluza-Klein reduction in these backgrounds is unusual, and we explore some of the new features. In particular, we describe how a localized gauge-field emerges with an analogue of the open string metric and coupling. We also describe a gravitational analogue of the Seiberg-Witten map. This provides a framework in supergravity both for studying non-commutative gauge theories, and for constructing novel warped backgrounds.Comment: 32 pages, LaTeX, references adde

    Gravity, p-branes and a spacetime counterpart of the Higgs effect

    Get PDF
    We point out that the worldvolume coordinate functions x^μ(ξ)\hat{x}^\mu(\xi) of a pp-brane, treated as an independent object interacting with dynamical gravity, are Goldstone fields for spacetime diffeomorphisms gauge symmetry. The presence of this gauge invariance is exhibited by its associated Noether identity, which expresses that the source equations follow from the gravitational equations. We discuss the spacetime counterpart of the Higgs effect and show that a pp-brane does not carry any local degrees of freedom, extending early known general relativity features. Our considerations are also relevant for brane world scenarios.Comment: 5 pages, RevTeX. v2 (30-IV-03) with additional text and reference

    The Worldvolume Action of Kink Solitons in AdS Spacetime

    Full text link
    A formalism is presented for computing the higher-order corrections to the worldvolume action of co-dimension one solitons. By modifying its potential, an explicit "kink" solution of a real scalar field in AdS spacetime is found. The formalism is then applied to explicitly compute the kink worldvolume action to quadratic order in two expansion parameters--associated with the hypersurface fluctuation length and the radius of AdS spacetime respectively. Two alternative methods are given for doing this. The results are expressed in terms of the trace of the extrinsic curvature and the intrinsic scalar curvature. In addition to conformal Galileon interactions, we find a non-Galileon term which is never sub-dominant. This method can be extended to any conformally flat bulk spacetime.Comment: 32 pages, 3 figures, typos corrected and additional comments adde

    Capacitive effects and memristive switching in three terminal multilayered MoS<inf>2</inf>devices

    Get PDF
    We report on the electrical properties of gated two-terminal multilayered molybdenum disulfide (MoS2) memristor devices having a planar architecture. The approach based on highly dispersed MoS2 flakes drop cast onto a bottom gated Si/SiO2 (100nm) wafer containing metal Pd contact electrodes yields devices that exhibit a number of complex properties including memristive and capacitive effects as well as multiple non-zero-crossing current-voltage hysteresis effects. The devices also show a reaction to a varying gate bias. An increasingly positive gate led to the devices displaying a linear ohmic I-V response while an increasingly negative gate bias drove the system to behave more memristive with a widening hysteresis loop
    corecore