370 research outputs found

    Multicomponent Strongly Interacting Few-Fermion Systems in One Dimension

    Full text link
    The paper examines a trapped one-dimensional system of multicomponent spinless fermions that interact with a zero-range two-body potential. We show that when the repulsion between particles is very large the system can be approached analytically. To illustrate this analytical approach we consider a simple system of three distinguishable particles, which can be addressed experimentally. For this system we show that for infinite repulsion the energy spectrum is sixfold degenerate. We also show that this degeneracy is partially lifted for finitely large repulsion for which we find and describe corresponding wave functions.Comment: Paper in connection with the 22nd European Conference on Few-Body Problems in Physics, Krakow, Poland, 9-13 September 201

    A Solvable Model for Decoupling of Interacting Clusters

    Full text link
    We consider M clusters of interacting particles, whose in-group interactions are arbitrary, and inter-group interactions are approximated by oscillator potentials. We show that there are masses and frequencies that decouple the in-group and inter-group degrees of freedom, which reduces the initial problem to M independent problems that describe each of the relative in-group systems. The dynamics of the M center-of-mass coordinates is described by the analytically solvable problem of M coupled harmonic oscillators. This paper derives and discusses these decoupling conditions. Furthermore, to illustrate our findings, we consider a charged impurity interacting with a ring of ions. We argue that the impurity can be used to probe the center-of-mass dynamics of the ions.Comment: Version accepted for publication in EP

    Eddy genesis and manipulation in plane laminar shear flow

    No full text
    Eddy formation and presence in a plane laminar shear flow configuration consisting of two infinitely long plates orientated parallel to each other is investigated theoretically. The upper plate, which is planar, drives the flow; the lower one has a sinusoidal profile and is fixed. The governing equations are solved via a full finite element formulation for the general case and semi-analytically at the Stokes flow limit. The effects of varying geometry (involving changes in the mean plate separation or the amplitude and wavelength of the lower plate) and inertia are explored separately. For Stokes flow and varying geometry, excellent agreement between the two methods of solution is found. Of particular interest with regard to the flow structure is the importance of the clearance that exists between the upper plate and the tops of the corrugations forming the lower one. When the clearance is large, an eddy is only present at sufficiently large amplitudes or small wavelengths. However, as the plate clearance is reduced, a critical value is found which triggers the formation of an eddy in an otherwise fully attached flow for any finite amplitude and arbitrarily large wavelength. This is a precursor to the primary eddy to be expected in the lid-driven cavity flow which is formed in the limit of zero clearance between the plates. The influence of the flow driving mechanism is assessed by comparison with corresponding solutions for the case of gravity-driven fluid films flowing over an undulating substrate. When inertia is present, the flow generally becomes asymmetrical. However, it is found that for large mean plate separations the flow local to the lower plate becomes effectively decoupled from the inertia dominated overlying flow if the wavelength of the lower plate is sufficiently small. In such cases the local flow retains its symmetry. A local Reynolds number based on the wavelength is shown to be useful in characterising these large-gap flows. As the mean plate separation is reduced, the form of the asymmetry caused by inertia changes, and becomes strongly dependent on the plate separation. For lower plate wavelengths which do not exhibit a cinematically induced secondary eddy, an inertially induced secondary eddy can be created if the mean plate separation is sufficiently small and the global Reynolds number sufficiently large

    Three-body recombination rates near a Feshbach resonance within a two-channel contact interaction model

    Full text link
    We calculate the three-body recombination rate into a shallow dimer in a gas of cold bosonic atoms near a Feshbach resonance using a two-channel contact interaction model. The two-channel model naturally describes the variation of the scattering length through the Feshbach resonance and has a finite effective range. We confront the theory with the available experimental data and show that the two-channel model is able to quantitatively describe the existing data. The finite effective range leads to a reduction of the scaling factor between the recombination minima from the universal value of 22.7. The reduction is larger for larger effective ranges or, correspondingly, for narrower Feshbach resonances.Comment: 9 pages, 7 figure

    Does presence of a mid-ocean ridge enhance biomass and biodiversity?

    Get PDF
    In contrast to generally sparse biological communities in open-ocean settings, seamounts and ridges are perceived as areas of elevated productivity and biodiversity capable of supporting commercial fisheries. We investigated the origin of this apparent biological enhancement over a segment of the North Mid-Atlantic Ridge (MAR) using sonar, corers, trawls, traps, and a remotely operated vehicle to survey habitat, biomass, and biodiversity. Satellite remote sensing provided information on flow patterns, thermal fronts, and primary production, while sediment traps measured export flux during 2007-2010. The MAR, 3,704,404 km 2 in area, accounts for 44.7% lower bathyal habitat (800-3500 m depth) in the North Atlantic and is dominated by fine soft sediment substrate (95% of area) on a series of flat terraces with intervening slopes either side of the ridge axis contributing to habitat heterogeneity. The MAR fauna comprises mainly species known from continental margins with no evidence of greater biodiversity. Primary production and export flux over the MAR were not enhanced compared with a nearby reference station over the Porcupine Abyssal Plain. Biomasses of benthic macrofauna and megafauna were similar to global averages at the same depths totalling an estimated 258.9 kt C over the entire lower bathyal north MAR. A hypothetical flat plain at 3500 m depth in place of the MAR would contain 85.6 kt C, implying an increase of 173.3 kt C attributable to the presence of the Ridge. This is approximately equal to 167 kt C of estimated pelagic biomass displaced by the volume of the MAR. There is no enhancement of biological productivity over the MAR; oceanic bathypelagic species are replaced by benthic fauna otherwise unable to survive in the mid ocean. We propose that globally sea floor elevation has no effect on deep sea biomass; pelagic plus benthic biomass is constant within a given surface productivity regime.Peer reviewe

    The Bathypelagic Biome of the Atlantic Ocean: Character and Ecological Discreteness of the Fish Fauna

    Get PDF
    Recent global synthetic analyses have revealed that marine taxonomic inventories are far from complete, nowhere more so than in the deep-pelagic ocean. At over a billion km3, it is the largest biome on Earth, yet only a tiny fraction of the biogeographic records include the bathypelagic fauna. This data gap served as the impetus for recent deepwater surveys, many of which have altered our perceptions of pelagic ecosystems. Here we examine data from four deep-pelagic (0-5000+ m) sampling programs in the Atlantic (60°N-25°S) in order to assess the character of bathypelagic fish communities with respect to faunal distinctiveness and ecological connectivity. Regions studied include the Gulf of Mexico, Sargasso 702 Sea, eastern North/South Atlantic, and mid-North Atlantic. Quantitative analyses give contrasting pictures with respect to faunal composition and ecosystem operation. The discreteness of the bathypelagic zone is exhibited faunistically by the suite of ―holobathypelagic‖ species found only below 1000 m, most of which are highly modified morphologically. Geometric abundance class analyses reveal that the character of relative species abundance distributions between the meso- and bathypelagic zones is fundamentally dissimilar; the former exhibit a much higher proportion of common species, while the latter exhibit a much higher percentage of rarer species. From a community energetics perspective, however, the bathy- and mesopelagic zones are highly interconnected. Approximately 70% of fish species collected below 1000 m are also found in the mesopelagic zone, and in the far North Atlantic, are also found in the epipelagial. These species comprised 66 to \u3e90% of individuals collected below 1000 m in the regions sampled. In the mid-North Atlantic, these species contribute to the unexpected water-column biomass maximum observed between 1500-2300 m. Thus, the ―transient‖ taxa (primarily mesopelagic migrators and spanner taxa) add considerably to the ichthyofaunal diversity of the world ocean below 1000 m, and appear to be the vectors that support the diverse array of holobathypelagic fishes whose taxonomic composition is dominated by piscivores. Data from the four regions studied suggests that classic pelagic biogeographic boundaries do not apply to bathypelagic realm, as shared species are the rule rather than the exception. Last, cumulative species curves suggest we are far from understanding the true complexity of the bathypelagic zone

    When Elders Rule: Age Composition in DecisionMaking and Legitimacy Perceptions

    Get PDF
    How does the predominance of older people in decision-making bodies influence citizens’ evaluations of their legitimacy? Through a survey experiment in the US, we vary the age composition of a bipartisan state legislative committee and its policy decisions. We find that citizens view the committee and its decisions as more legitimate if it has a balanced age composition, rather than consisting only of older members. The presence of younger members improves perceptions of procedural fairness, regardless of the decision reached, and can even legitimize decisions that go against youth interests. Additionally, age diversity enhances perceived legitimacy more for younger people than for older people, and for Democrats compared to Republicans. Our study suggests that greater youth representation in the decision-making process can bolster public trust in democratic institutions to produce more equitable outcomes

    Clusters in separated tubes of tilted dipoles

    Get PDF
    A few-body cluster is a building block of a many-body system in a gas phase provided the temperature at most is of the order of the binding energy of this cluster. Here we illustrate this statement by considering a system of tubes filled with dipolar distinguishable particles. We calculate the partition function, which determines the probability to find a few-body cluster at a given temperature. The input for our calculations—the energies of few-body clusters—is estimated using the harmonic approximation. We first describe and demonstrate the validity of our numerical procedure. Then we discuss the results featuring melting of the zero-temperature many-body state into a gas of free particles and few-body clusters. For temperature higher than its binding energy threshold, the dimers overwhelmingly dominate the ensemble, where the remaining probability is in free particles. At very high temperatures free (harmonic oscillator trap-bound) particle dominance is eventually reached. This structure evolution appears both for one and two particles in each layer providing crucial information about the behavior of ultracold dipolar gases. The investigation addresses the transition region between few- and many-body physics as a function of temperature using a system of ten dipoles in five tubes
    corecore