1,224 research outputs found

    Caracterización hidrogeoquímica de los manantiales del área geotermal de Ixtapan de la Sal-Tonatico (México)

    Get PDF
    La composición química del agua subterránea es el resultado de continuos procesos de interacción entre el agua de precipitación, que se infiltra en el terreno, y los minerales presentes en las rocas por donde circula. Parte de las características químicas del agua son adquiridas en la zona no saturada y otras más a lo largo de su recorrido dentro de la zona saturada, hasta donde pueden ser captadas o bien emerger como agua de manantial. Estos últimos según sus características, puede ser empleados para consumo humano, como generadores de energía o bien para fines recreativos, como es el caso de los manantiales termales de Ixtapan de la Sal y Tonatico. Los estudios hidrogeoquímicos de manantiales termales han permitido ampliar el conocimiento del origen, edad, composición físico-química de las aguas, de las condiciones de recarga y posibles mezclas de agua, así como identificar los procesos que tienen lugar en el acuífero y que permiten obtener una visión más completa del comportamiento del acuífero. También permiten deducir las características de la roca, composición mineralógica, textura, porosidad, grado de alteración, fracturación y compactación, tiempo de residencia o de contacto, temperatura y presión..

    Numerical Study of Aging in the Generalized Random Energy Model

    Full text link
    Magnetizations are introduced to the Generalized Random Energy Model (GREM) and numerical simulations on ac susceptibility is made for direct comparison with experiments in glassy materials. Prominent dynamical natures of spin glasses, {\it i.e.}, {\em memory} effect and {\em reinitialization}, are reproduced well in the GREM. The existence of many layers causing continuous transitions is very important for the two natures. Results of experiments in other glassy materials such as polymers, supercooled glycerol and orientational glasses, which are contrast to those in spin glasses, are interpreted well by the Single-layer Random Energy Model.Comment: 8 pages, 9 figures, to be submitted to J. Phys. Soc. Jp

    Interacting Preformed Cooper Pairs in Resonant Fermi Gases

    Get PDF
    We consider the normal phase of a strongly interacting Fermi gas, which can have either an equal or an unequal number of atoms in its two accessible spin states. Due to the unitarity-limited attractive interaction between particles with different spin, noncondensed Cooper pairs are formed. The starting point in treating preformed pairs is the Nozi\`{e}res-Schmitt-Rink (NSR) theory, which approximates the pairs as being noninteracting. Here, we consider the effects of the interactions between the Cooper pairs in a Wilsonian renormalization-group scheme. Starting from the exact bosonic action for the pairs, we calculate the Cooper-pair self-energy by combining the NSR formalism with the Wilsonian approach. We compare our findings with the recent experiments by Harikoshi {\it et al.} [Science {\bf 327}, 442 (2010)] and Nascimb\`{e}ne {\it et al.} [Nature {\bf 463}, 1057 (2010)], and find very good agreement. We also make predictions for the population-imbalanced case, that can be tested in experiments.Comment: 10 pages, 6 figures, accepted version for PRA, discussion of the imbalanced Fermi gas added, new figure and references adde

    Measurement of the cross-section and charge asymmetry of WW bosons produced in proton-proton collisions at s=8\sqrt{s}=8 TeV with the ATLAS detector

    Get PDF
    This paper presents measurements of the W+μ+νW^+ \rightarrow \mu^+\nu and WμνW^- \rightarrow \mu^-\nu cross-sections and the associated charge asymmetry as a function of the absolute pseudorapidity of the decay muon. The data were collected in proton--proton collisions at a centre-of-mass energy of 8 TeV with the ATLAS experiment at the LHC and correspond to a total integrated luminosity of 20.2~\mbox{fb^{-1}}. The precision of the cross-section measurements varies between 0.8% to 1.5% as a function of the pseudorapidity, excluding the 1.9% uncertainty on the integrated luminosity. The charge asymmetry is measured with an uncertainty between 0.002 and 0.003. The results are compared with predictions based on next-to-next-to-leading-order calculations with various parton distribution functions and have the sensitivity to discriminate between them.Comment: 38 pages in total, author list starting page 22, 5 figures, 4 tables, submitted to EPJC. All figures including auxiliary figures are available at https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/STDM-2017-13

    Search for direct stau production in events with two hadronic tau-leptons in root s=13 TeV pp collisions with the ATLAS detector

    Get PDF
    A search for the direct production of the supersymmetric partners ofτ-leptons (staus) in final stateswith two hadronically decayingτ-leptons is presented. The analysis uses a dataset of pp collisions corresponding to an integrated luminosity of139fb−1, recorded with the ATLAS detector at the LargeHadron Collider at a center-of-mass energy of 13 TeV. No significant deviation from the expected StandardModel background is observed. Limits are derived in scenarios of direct production of stau pairs with eachstau decaying into the stable lightest neutralino and oneτ-lepton in simplified models where the two staumass eigenstates are degenerate. Stau masses from 120 GeV to 390 GeV are excluded at 95% confidencelevel for a massless lightest neutralino

    Search for chargino-neutralino production with mass splittings near the electroweak scale in three-lepton final states in √s=13 TeV pp collisions with the ATLAS detector

    Get PDF
    A search for supersymmetry through the pair production of electroweakinos with mass splittings near the electroweak scale and decaying via on-shell W and Z bosons is presented for a three-lepton final state. The analyzed proton-proton collision data taken at a center-of-mass energy of √s=13  TeV were collected between 2015 and 2018 by the ATLAS experiment at the Large Hadron Collider, corresponding to an integrated luminosity of 139  fb−1. A search, emulating the recursive jigsaw reconstruction technique with easily reproducible laboratory-frame variables, is performed. The two excesses observed in the 2015–2016 data recursive jigsaw analysis in the low-mass three-lepton phase space are reproduced. Results with the full data set are in agreement with the Standard Model expectations. They are interpreted to set exclusion limits at the 95% confidence level on simplified models of chargino-neutralino pair production for masses up to 345 GeV

    Search for new phenomena in final states with an energetic jet and large missing transverse momentum in pp collisions at √ s = 8 TeV with the ATLAS detector

    Get PDF
    Results of a search for new phenomena in final states with an energetic jet and large missing transverse momentum are reported. The search uses 20.3 fb−1 of √ s = 8 TeV data collected in 2012 with the ATLAS detector at the LHC. Events are required to have at least one jet with pT > 120 GeV and no leptons. Nine signal regions are considered with increasing missing transverse momentum requirements between Emiss T > 150 GeV and Emiss T > 700 GeV. Good agreement is observed between the number of events in data and Standard Model expectations. The results are translated into exclusion limits on models with either large extra spatial dimensions, pair production of weakly interacting dark matter candidates, or production of very light gravitinos in a gauge-mediated supersymmetric model. In addition, limits on the production of an invisibly decaying Higgs-like boson leading to similar topologies in the final state are presente

    Correlated long-range mixed-harmonic fluctuations measured in pp, p+Pb and low-multiplicity Pb+Pb collisions with the ATLAS detector

    Get PDF
    For abstract see published article

    Measurement of the Higgs boson mass in the H→ZZ ∗ →4ℓ and H→γγ channels with √s =13 TeV pp collisions using the ATLAS detector

    Get PDF
    The mass of the Higgs boson is measured in the H→ZZ ∗ →4ℓ and in the H→γγ decay channels with 36.1 fb −1 of proton-proton collision data from the Large Hadron Collider at a centre-of-mass energy of 13 TeV recorded by the ATLAS detector in 2015 and 2016. The measured value in the H→ZZ ∗ →4ℓ channel is m ZZ ∗ H =124.79±0.37 GeV, while the measured value in the H→γγ channel is m γγ H =124.93±0.40 GeV. Combining these results with the ATLAS measurement based on 7 TeV and 8 TeV proton-proton collision data yields a Higgs boson mass of m H =124.97±0.24 GeV

    Search for direct top squark pair production in final states with two leptons in √s=13 TeV pp collisions with the ATLAS detector

    Get PDF
    The results of a search for direct pair production of top squarks in events with two opposite-charge leptons (electrons or muons) are reported, using 36.1 fb−1 of integrated luminosity from proton–proton collisions at √s=13 TeV collected by the ATLAS detector at the Large Hadron Collider. To cover a range of mass differences between the top squark t~ and lighter supersymmetric particles, four possible decay modes of the top squark are targeted with dedicated selections: the decay t~→bχ~1± into a b-quark and the lightest chargino with χ~1±→Wχ~10 , t~→tχ~10 into an on-shell top quark and the lightest neutralino, the three-body decay t~→bWχ~10 and the four-body decay t~→bℓνχ~10. No significant excess of events is observed above the Standard Model background for any selection, and limits on top squarks are set as a function of the t~ and χ~01 masses. The results exclude at 95% confidence level t~ masses up to about 720 GeV, extending the exclusion region of supersymmetric parameter space covered by previous searches
    corecore