1,513 research outputs found
Observation of Scalar Aharonov-Bohm Effect with Longitudinally Polarized Neutrons
We have carried out a neutron interferometry experiment using longitudinally polarized neutrons to observe the scalar Aharonov-Bohm effect. The neutrons inside the interferometer are polarized parallel to an applied pulsed magnetic field B(t). The pulsed B field is spatially uniform so it exerts no force on the neutrons. Its direction also precludes the presence of any classical torque to change the neutron polarization
Scalar Aharonov-Bohm effect with longitudinally polarized neutrons
In the scalar Aharonov-Bohm effect, a charged particle (electron) interacts with the scalar electrostatic potential U in the field-free (i.e., force-free) region inside an electrostatic cylinder (Faraday cage). Using a perfect single-crystal neutron interferometer we have performed a “dual” scalar Aharonov-Bohm experiment by subjecting polarized thermal neutrons to a pulsed magnetic field. The pulsed magnetic field was spatially uniform, precluding any force on the neutrons. Aligning the direction of the pulsed magnetic field to the neutron magnetic moment also rules out any classical torque acting to change the neutron polarization. The observed phase shift is purely quantum mechanical in origin. A detailed description of the experiment, performed at the University of Missouri Research Reactor, and its interpretation is given in this paper
³¹P Saturation Transfer and Phosphocreatine Imaging in the Monkey Brain
³¹P magnetic resonance imaging with chemical-shift discrimination by selective excitation has been employed to determine the phosphocreatine (PCr) distribution in the brains of three juvenile macaque monkeys. PCr images were also obtained while saturating the resonance of the {gamma}-phosphate of ATP, which allowed the investigation of the chemical exchange between PCr and the {gamma}-phosphate of ATP catalyzed by creatine kinase. Superposition of the PCr images over the proton image of the same monkey brain revealed topological variations in the distribution of PCr and creatine kinase activity. PCr images were also obtained with and without visual stimulation. In two out of four experiments, an apparently localized decrease in PCr concentration was noted in visual cortex upon visual stimulation. This result is interpreted in terms of a possible role for the local ADP concentration in stimulating the accompanying metabolic response
Retinotopic organization of extrastriate cortex in the owl monkey—dorsal and lateral areas
Dense retinotopy data sets were obtained by microelectrode visual receptive field mapping in dorsal and lateral visual cortex of anesthetized owl monkeys. The cortex was then physically flatmounted and stained for myelin or cytochrome oxidase. Retinotopic mapping data were digitized, interpolated to a uniform grid, analyzed using the visual field sign technique—which locally distinguishes mirror image from nonmirror image visual field representations—and correlated with the myelin or cytochrome oxidase patterns. The region between V2 (nonmirror) and MT (nonmirror) contains three areas—DLp (mirror), DLi (nonmirror), and DLa/MTc (mirror). DM (mirror) was thin anteroposteriorly, and its reduced upper field bent somewhat anteriorly away from V2. DI (nonmirror) directly adjoined V2 (nonmirror) and contained only an upper field representation that also adjoined upper field DM (mirror). Retinotopy was used to define area VPP (nonmirror), which adjoins DM anteriorly, area FSTd (mirror), which adjoins MT ventrolaterally, and TP (mirror), which adjoins MT and DLa/MTc dorsoanteriorly. There was additional retinotopic and architectonic evidence for five more subdivisions of dorsal and lateral extrastriate cortex—TA (nonmirror), MSTd (mirror), MSTv (nonmirror), FSTv (nonmirror), and PP (mirror). Our data appear quite similar to data from marmosets, though our field sign-based areal subdivisions are slightly different. The region immediately anterior to the superiorly located central lower visual field V2 varied substantially between individuals, but always contained upper fields immediately touching lower visual field V2. This region appears to vary even more between species. Though we provide a summary diagram, given within- and between-species variation, it should be regarded as a guide to parsing complex retinotopy rather than a literal representation of any individual, or as the only way to agglomerate the complex mosaic of partial upper and lower field, mirror- and nonmirror-image patches into areas
Classical and Quantum Interaction of the Dipole
A unified and fully relativistic treatment of the interaction of the electric
and magnetic dipole moments of a particle with the electromagnetic field is
given. New forces on the particle due to the combined effect of electric and
magnetic dipoles are obtained. Four new experiments are proposed, three of
which would observe topological phase shifts.Comment: 10 pages, Latex/Revtex. Some minor errors have been correcte
Interrelations Between the Neutron's Magnetic Interactions and the Magnetic Aharonov-Bohm Effect
It is proved that the phase shift of a polarized neutron interacting with a
spatially uniform time-dependent magnetic field, demonstrates the same physical
principles as the magnetic Aharonov-Bohm effect. The crucial role of inert
objects is explained, thereby proving the quantum mechanical nature of the
effect. It is also proved that the nonsimply connectedness of the field-free
region is not a profound property of the system and that it cannot be regarded
as a sufficient condition for a nonzero phase shift.Comment: 18 pages, 1 postscript figure, Late
Correspondences and Quantum Description of Aharonov-Bohm and Aharonov-Casher Effects
We establish systematic consolidation of the Aharonov-Bohm and
Aharonov-Casher effects including their scalar counterparts. Their formal
correspondences in acquiring topological phases are revealed on the basis of
the gauge symmetry in non-simply connected spaces and the adiabatic condition
for the state of magnetic dipoles. In addition, investigation of basic two-body
interactions between an electric charge and a magnetic dipole clarifies their
appropriate relative motions and discloses physical interrelations between the
effects. Based on the two-body interaction, we also construct an exact
microscopic description of the Aharonov-Bohm effect, where all the elements are
treated on equal footing, i.e., magnetic dipoles are described
quantum-mechanically and electromagnetic fields are quantized. This microscopic
analysis not only confirms the conventional (semiclassical) results and the
topological nature but also allows one to explore the fluctuation effects due
to the precession of the magnetic dipoles with the adiabatic condition relaxed
State education as high-yield investment: human capital theory in European policy discourse
Human Capital Theory has been an increasingly important phenomenon in economic thought over the last 50 years. The central role it affords to education has become even more marked in recent years as the concept of the ‘knowledge economy’ has become a global concern. In this paper, the prevalence of Human Capital Theory within European educational policy discourse is explored. The paper examines a selection of policy documents from a number of disparate European national contexts and considers the extent to which the ideas of Human Capital Theory can be seen to be influential. In the second part of the paper, the implications of Human Capital Theory for education are considered, with a particular focus on the possible ramifications at a time of economic austerity. The paper argues that Human Capital Theory risks offering a diminished view of the person, a diminished view of education, but that with its sole focus on economic goals leaves room for educationists and others to argue for the educational, social, and moral values it ignores, and for the conception of the good life and good society it fails to mention
- …
