13,957 research outputs found
Recommended from our members
Estimation of energy and material use of sintering-based construction for a lunar outpost - with the example of SinterHab module design
In this paper, we would revisit the usability of microwave for lunar regolith sintering through an in-depth experiment, and examine the minimum materials and energy required for sintering based on the SinterHab design. This will include the minimum layers to print, estimated printing time, minimum energy required for the sintering process and the potential energy sources
Recommended from our members
Applying New Models of Care to Meet Patient Needs in Integrative Oncology.
Trading Determinism for Time in Space Bounded Computations
Savitch showed in that nondeterministic logspace (NL) is contained in
deterministic space but his algorithm requires
quasipolynomial time. The question whether we can have a deterministic
algorithm for every problem in NL that requires polylogarithmic space and
simultaneously runs in polynomial time was left open.
In this paper we give a partial solution to this problem and show that for
every language in NL there exists an unambiguous nondeterministic algorithm
that requires space and simultaneously runs in
polynomial time.Comment: Accepted in MFCS 201
Recommended from our members
Petrology and geochemistry of nakhlite MIL 03346: A new Martian meteorite from Antarctica
MIL 03346 is the first nakhlite in the US Antarctic collection. We have performed detailed mineralogical and bulk-geochemical investigations to compare petrogenesis of this Martian meteorite with other nakhlites
Entropy measures for complex networks: Toward an information theory of complex topologies
The quantification of the complexity of networks is, today, a fundamental
problem in the physics of complex systems. A possible roadmap to solve the
problem is via extending key concepts of information theory to networks. In
this paper we propose how to define the Shannon entropy of a network ensemble
and how it relates to the Gibbs and von Neumann entropies of network ensembles.
The quantities we introduce here will play a crucial role for the formulation
of null models of networks through maximum-entropy arguments and will
contribute to inference problems emerging in the field of complex networks.Comment: (4 pages, 1 figure
Crystal field states of Kondo lattice heavy fermions CeRuSn3 and CeRhSn3
Inelastic neutron scattering experiments have been carried out to determine
the crystal field states of the Kondo lattice heavy fermions CeRuSn3 and
CeRhSn3. Both the compounds crystallize in LaRuSn3-type cubic structure (space
group Pm-3n) in which the Ce atoms occupy two distinct crystallographic sites
with cubic (m-3) and tetragonal (-4m.2) point symmetries. The INS data of
CeRuSn3 reveal the presence of a broad excitation centered around 6-8 meV which
is accounted by a model based on crystal electric field (CEF) excitations. On
the other hand, the INS data of isostructural CeRhSn3 reveal three CEF
excitations around 7.0, 12.2 and 37.2 meV. The neutron intensity sum rule
indicates that the Ce ions at both cubic and tetragonal Ce sites are in Ce3+
state in both CeRuSn3 and CeRhSn3. The CEF level schemes for both the compounds
are deduced. We estimate the Kondo temperature T_K = 3.1(2) K for CeRuSn3 from
neutron quasielastic linewidth in excellent agreement with that determined from
the scaling of magnetoresistance which gives T_K = 3.2(1) K. For CeRhSn3 the
neutron quasielastic linewidth gives T_K = 4.6 K. For both CeRuSn3 and CeRhSn3,
the ground state of Ce3+ turns out to be a quartet for the cubic site and a
doublet for the tetragonal site.Comment: 12 pages, 13 figures, 2 tables, to appear in Phys. Rev.
Formulation and characterization of an apigenin-phospholipid phytosome (APLC) for improved solubility, in vivo bioavailability, and antioxidant potential
The apigenin-phospholipid phytosome (APLC) was developed to improve the aqueous solubility, dissolution, in vivo bioavailability, and antioxidant activity of apigenin. The APLC synthesis was guided by a full factorial design strategy, incorporating specific formulation and process variables to deliver an optimized product. The design-optimized formulation was assayed for aqueous solubility, in vitro dissolution, pharmacokinetics, and antioxidant activity. The pharmacological evaluation was carried out by assessing its effects on carbon tetrachloride-induced elevation of liver function marker enzymes in a rat model. The antioxidant activity was assessed by studying its effects on the liver antioxidant marker enzymes. The developed model was validated using the design-optimized levels of formulation and process variables. The physical-chemical characterization confirmed the formation of phytosomes. The optimized formulation demonstrated over 36-fold higher aqueous solubility of apigenin, compared to that of pure apigenin. The formulation also exhibited a significantly higher rate and extent of apigenin release in dissolution studies. The pharmacokinetic analysis revealed a significant enhancement in the oral bioavailability of apigenin from the prepared formulation, compared to pure apigenin. The liver function tests indicated that the prepared phytosome showed a significantly improved restoration of all carbon tetrachloride-elevated rat liver function marker enzymes. The prepared formulation also exhibited antioxidant potential by significantly increasing the levels of glutathione, superoxide dismutase, catalase, and decreasing the levels of lipid peroxidase. The study shows that phospholipid-based phytosome is a promising and viable strategy for improving the delivery of apigenin and similar phytoconstituents with low aqueous solubility
- …
