1,135 research outputs found
Effect of black caarbon on the growth, development and evapotranspriration of maize
Abstract. The effect of soot on certain parameters of maize was analysed. We applied low rates of soot (3
gm–2week–1) with a motorised sprayer. The effect of soot on evapotranspiration was tested on plants
grown in evapotranspirometer (ET). Soot pollution had no influence on maize growth and development.
Leaf withering after full maturity, however, was delayed by the presence of soot. The ability of soot to
absorb irradiation and thus increase leaf surface temperatures led to an increase of 4% in the annual
evapotranspiration sum. Soot pollution reduced dry matter (DM) on the rainfed plots (8.8 %), but not in
the ET tanks. In the ET tanks, soot had no significant influence on either the stalk or the grain DM,
though slight reductions were recorded. On the non-irrigated plot there was 12.4 % reduction in grain dry
matter in response to pollution. Supplementary water supplies mitigated the plant damage caused by soot.
A further advantage was detected in the number of deformed ears
Phonon Rabi-assisted tunneling in diatomic molecules
We study electronic transport in diatomic molecules connected to metallic
contacts in the regime where both electron-electron and electron-phonon
interactions are important. We find that the competition between these
interactions results in unique resonant conditions for interlevel transitions
and polaron formation: the Coulomb repulsion requires additional energy when
electrons attempt phonon-assisted interlevel jumps between fully or partially
occupied levels. We apply the equations of motion approach to calculate the
electronic Green's functions. The density of states and conductance through the
system are shown to exhibit interesting Rabi-like splitting of Coulomb blockade
peaks and strong temperature dependence under the it interacting resonant
conditions.Comment: Updated version, 5 pages, 4 figures, to be published in Phys. Rev. B
on 9/1
Relevance of quantum fluctuations in the Anderson-Kondo model
We study a localized spin coupled to an Anderson impurity to model the
situation found in higher transition metal or rare earth compounds like e.g.\
LaMnO or Gd monopnictides. We find that, even for large quantum numbers of
the localized spin, quantum fluctuations play an essential role for the case of
ferromagnetic coupling between the spin and the impurity levels. For
antiferromagnetic coupling, a description in terms of a classical spin is
appropriate
Extended hopanoid loss reduces bacterial motility and surface attachment, and leads to heterogeneity in root nodule growth kinetics in a Bradyrhizobium-Aeschynomene symbiosis
Hopanoids are steroid-like bacterial lipids that enhance membrane rigidity and promote bacterial growth under diverse stresses. Roughly 10% of bacteria contain genes involved in hopanoid biosynthesis, and these genes are particularly conserved in plant-associated organisms. We previously found that the extended class of hopanoids (C35) in the nitrogen-fixing soil bacterium Bradyrhizobium diazoefficiens promotes its root nodule symbiosis with the tropical legume Aeschynomene afraspera. By quantitatively modeling root nodule development, we identify independent consequences of extended hopanoid loss in the initiation of root nodule formation and in the rate of root nodule maturation. In vitro studies demonstrate that extended hopanoids support B. diazoefficiens motility and surface attachment, which may correlate with stable root colonization in planta. Confocal microscopy of maturing root nodules reveals that root nodules infected with extended hopanoid-deficient B. diazoefficiens contain unusually low densities of bacterial symbionts, indicating that extended hopanoids are necessary for persistent, high levels of host infection
The tunnel magnetoresistance in chains of quantum dots weakly coupled to external leads
We analyze numerically the spin-dependent transport through coherent chains
of three coupled quantum dots weakly connected to external magnetic leads. In
particular, using the diagrammatic technique on the Keldysh contour, we
calculate the conductance, shot noise and tunnel magnetoresistance (TMR) in the
sequential and cotunneling regimes. We show that transport characteristics
greatly depend on the strength of the interdot Coulomb correlations, which
determines the spacial distribution of electron wave function in the chain.
When the correlations are relatively strong, depending on the transport regime,
we find both negative TMR as well as TMR enhanced above the Julliere value,
accompanied with negative differential conductance (NDC) and super-Poissonian
shot noise. This nontrivial behavior of tunnel magnetoresistance is associated
with selection rules that govern tunneling processes and various high-spin
states of the chain that are relevant for transport. For weak interdot
correlations, on the other hand, the TMR is always positive and not larger than
the Julliere TMR, although super-Poissonian shot noise and NDC can still be
observed
Dynamic instabilities in resonant tunneling induced by a magnetic field
We show that the addition of a magnetic field parallel to the current induces
self sustained intrinsic current oscillations in an asymmetric double barrier
structure. The oscillations are attributed to the nonlinear dynamic coupling of
the current to the charge trapped in the well, and the effect of the external
field over the local density of states across the system. Our results show that
the system bifurcates as the field is increased, and may transit to chaos at
large enough fields.Comment: 4 pages, 3 figures, accepted in Phys. Rev. Letter
Inclined ergometer to enhance FES-assisted indoor rowing exercise performance
Improving the FES-assisted indoor rowing exercise (FES-rowing) performance enables the spinal cord injury (SCI) people to perform hybrid FES-exercise in a higher level of intensity. High level of exercise volume and intensity can play a big role in prevention of cardiovascular disease, type 2 diabetes and obesity which is a significant threat to the health of people with chronic SCI. FES-rowing can be enhanced to achieved the high level exercise through the arrangement of the rowing ergometer. In this paper, the performance of FES-rowing using an adjustable inclined rowing ergometer is investigated. Two different methods to enhance the FES-rowing performance using inclined ergometer are implemented. A model of the adjustable inclined ergometer and humanoid are developed using the Visual Nastran (vN4D) software environment and validated by the experimental work. Fuzzy logic control is implemented to control the knee and elbow trajectories for smooth rowing manoeuvre. The generated level of electrical stimulations for activation of quadriceps and hamstrings muscles are recorded and analysed. The FES-rowing efficiency for both methods have been defined and illustrated. The results show the inclined ergometer with upper body effort is the best performance in enhancing the FES-rowing
Transport in Coupled Quantum Dots: Kondo Effect Versus Anti-Ferromagnetic Correlation
The interplay between the Kondo effect and the inter-dot magnetic interaction
in a coupled-dot system is studied. An exact result for the transport
properties at zero temperature is obtained by diagonalizing a cluster, composed
by the double-dot and its vicinity, which is connected to leads. It is shown
that the system goes continuously from the Kondo regime to an
anti-ferromagnetic state as the inter-dot interaction is increased. The
conductance, the charge at the dots and the spin-spin correlation are obtained
as a function of the gate potential.Comment: 4 pages, 3 postscript figures. Submitted to PR
Kondo resonance effect on persistent currents through a quantum dot in a mesoscopic ring
The persistent current through a quantum dot inserted in a mesoscopic ring of
length L is studied. A cluster representing the dot and its vicinity is exactly
diagonalized and embedded into the rest of the ring. The Kondo resonance
provides a new channel for the current to flow. It is shown that due to scaling
properties, the persistent current at the Kondo regime is enhanced relative to
the current flowing either when the dot is at resonance or along a perfect ring
of same length. In the Kondo regime the current scales as , unlike
the scaling of a perfect ring. We discuss the possibility of detection
of the Kondo effect by means of a persistent current measurement.Comment: 11 pages, 3 Postscript figure
Transport Properties of Multiple Quantum Dots Arranged in Parallel: Results from the Bethe Ansatz
In this paper we analyze transport through a double dot system connected to
two external leads. Imagining each dot possessing a single active level, we
model the system through a generalization of the Anderson model. We argue that
this model is exactly solvable when certain constraints are placed upon the dot
Coulomb charging energy, the dot-lead hybridization, and the value of the
applied gate voltage. Using this exact solvability, we access the zero
temperature linear response conductance both in and out of the presence of a
Zeeman field. We are also able to study the finite temperature linear response
conductance. We focus on universal behaviour and identify three primary
features in the transport of the dots: i) a so-called RKKY Kondo effect; ii) a
standard Kondo effect; and iii) interference phenomena leading to sharp
variations in the conductance including conductance zeros. We are able to use
the exact solvability of the dot model to characterize these phenomena
quantitatively. While here we primarily consider a double dot system, the
approach adopted applies equally well to N-dot systems.Comment: 28 pages, 10 figures; references added in v
- …
