14 research outputs found
The relationship between the parenteral dose of fish oil supplementation and the variation of liver function tests in hospitalized adult patients
Orientation-dependent properties of epitaxially strained perovskite oxide thin films: Insights from first-principles calculations
Recommended from our members
Electronic and Polar Properties of Vanadate Compounds Stabilized by Epitaxial Strain
Recent experimental and computational studies have demonstrated pressure and epitaxial stabilization of polar PbVO3 phases with perovskite-derivative crystal structures. In this study, we demonstrate, by density functional theory (DFT) calculations, the stability of similar perovskite-derivative structures in the KVO3 and NaVO3 systems when subjected to compressive biaxial strain. The electronic structure and polar properties of these compounds are computed as a function of biaxial strain, and the results are compared to those obtained for experimentally observed PbVO3 structures. It is demonstrated that the substitution of Pb with monovalent K or Na cations increases the strength of the vanadyl bond due to the removal of the spatially extended Pb 6p states. Both KVO3 and NaVO3 exhibit epitaxially stabilized perovskite-derivative phases having large polarizations and only small total energy increases relative to their unstrained bulk structures. The calculated epitaxial phase diagram for KVO3 predicts a strain-energy driving force for a phase separation from ∼% to 1.5% misfit strain into a polar Cm phase, having square-pyramidal coordination of the B-site, and a paraelectric Pbcm phase, having tetrahedral coordination of the B-site. The results show that strain-stabilized polar vanadate compounds may occur for other compositions in addition to PbVO3 and that changes in the A-site species can be used to tune bonding, structure, and functional properties in these systems
Recommended from our members
Orientation-dependent properties of epitaxially strained perovskite oxide thin films: Insights from first-principles calculations
The structural properties, energetics, and polarizations of perovskite-based thin-film oxide systems are computed as a function of biaxial strain state and epitaxial orientation, employing an automated computational workflow based on density functional theory. A total of 14 compositions are considered, of the form ABO3, with A = Ba, K, Na, Pb, and Sr and B = Hf, Sn, Ti, Zr, Nb, Ta, and V site cations chosen to yield tolerance factors with values ranging between 0.95 and 1.1. Three biaxial strain states corresponding to epitaxial growth of (100)-, (110)-, and (111)-oriented films are considered, with misfit strains ranging between -4% to 4%. Results are presented for the series of perovskite-derived phases, and their corresponding symmetries, which are energetically favorable as a function of misfit strain, along with their corresponding equilibrium atomic positions, lattice parameters, and electric polarizations. The results demonstrate robust trends of in-plane polarization enhancement under tensile strain for all epitaxial orientations, and out-of-plane polarization enhancement with compression for the (100)- and (110)-oriented films. Strains corresponding to the (111)-growth orientation lead to a wider variety of out-of-plane polarization behavior, with BaTiO3 showing anomalous diminishing polarization with compression. Epitaxial orientation is shown to have a strong effect on the nature of strain-induced phase transitions, with (100)-oriented systems tending to have smooth, second-order transitions and (110)- and (111)-oriented systems more commonly exhibiting first-order transitions. The significance of this effect for device applications is discussed, and a number of systems are identified as potentially interesting for ferroelectric thin-film applications based on energetic stability and polarization behavior. Analysis of polarization behavior across different orientations reveals distinct groups into which compositions can be organized, some of which have polarization dependencies on misfit strain that have not been reported previously
Recommended from our members
Electronic and Polar Properties of Vanadate Compounds Stabilized by Epitaxial Strain
Recent experimental and computational studies have demonstrated pressure and epitaxial stabilization of polar PbVO3 phases with perovskite-derivative crystal structures. In this study, we demonstrate, by density functional theory (DFT) calculations, the stability of similar perovskite-derivative structures in the KVO3 and NaVO3 systems when subjected to compressive biaxial strain. The electronic structure and polar properties of these compounds are computed as a function of biaxial strain, and the results are compared to those obtained for experimentally observed PbVO3 structures. It is demonstrated that the substitution of Pb with monovalent K or Na cations increases the strength of the vanadyl bond due to the removal of the spatially extended Pb 6p states. Both KVO3 and NaVO3 exhibit epitaxially stabilized perovskite-derivative phases having large polarizations and only small total energy increases relative to their unstrained bulk structures. The calculated epitaxial phase diagram for KVO3 predicts a strain-energy driving force for a phase separation from ∼% to 1.5% misfit strain into a polar Cm phase, having square-pyramidal coordination of the B-site, and a paraelectric Pbcm phase, having tetrahedral coordination of the B-site. The results show that strain-stabilized polar vanadate compounds may occur for other compositions in addition to PbVO3 and that changes in the A-site species can be used to tune bonding, structure, and functional properties in these systems
Orientation-dependent properties of epitaxially strained perovskite oxide thin films: Insights from first-principles calculations
The structural properties, energetics, and polarizations of perovskite-based thin-film oxide systems are computed as a function of biaxial strain state and epitaxial orientation, employing an automated computational workflow based on density functional theory. A total of 14 compositions are considered, of the form ABO3, with A = Ba, K, Na, Pb, and Sr and B = Hf, Sn, Ti, Zr, Nb, Ta, and V site cations chosen to yield tolerance factors with values ranging between 0.95 and 1.1. Three biaxial strain states corresponding to epitaxial growth of (100)-, (110)-, and (111)-oriented films are considered, with misfit strains ranging between -4% to 4%. Results are presented for the series of perovskite-derived phases, and their corresponding symmetries, which are energetically favorable as a function of misfit strain, along with their corresponding equilibrium atomic positions, lattice parameters, and electric polarizations. The results demonstrate robust trends of in-plane polarization enhancement under tensile strain for all epitaxial orientations, and out-of-plane polarization enhancement with compression for the (100)- and (110)-oriented films. Strains corresponding to the (111)-growth orientation lead to a wider variety of out-of-plane polarization behavior, with BaTiO3 showing anomalous diminishing polarization with compression. Epitaxial orientation is shown to have a strong effect on the nature of strain-induced phase transitions, with (100)-oriented systems tending to have smooth, second-order transitions and (110)- and (111)-oriented systems more commonly exhibiting first-order transitions. The significance of this effect for device applications is discussed, and a number of systems are identified as potentially interesting for ferroelectric thin-film applications based on energetic stability and polarization behavior. Analysis of polarization behavior across different orientations reveals distinct groups into which compositions can be organized, some of which have polarization dependencies on misfit strain that have not been reported previously
Frontiers in strain-engineered multifunctional ferroic materials
Multifunctional, complex oxides capable of exhibiting highly-coupled electrical, mechanical, thermal, and magnetic susceptibilities have been pursued to address a range of salient technological challenges. Today, efforts are focused on addressing the pressing needs of a range of applications and identifying, understanding, and controlling materials with the potential for enhanced or novel responses. In this prospective, we highlight important developments in theoretical and computational techniques, materials synthesis, and characterization techniques. We explore how these new approaches could revolutionize our ability to discover, probe, and engineer these materials and provide a context for new arenas where these materials might make an impact
Computational diagnostics with gene expression profiles
Gene expression profiling using micro-arrays is a modern approach for molecular diagnostics. In clinical micro-array studies, researchers aim to predict disease type, survival, or treatment response using gene expression profiles. In this process, they encounter a series of obstacles and pitfalls. This chapter reviews fundamental issues from machine learning and recommends a procedure for the computational aspects of a clinical micro-array study
