297 research outputs found
A Two-Dimensional Carbon Semiconductor
We show that patterned defects can be used to disrupt the sub-lattice
symmetry of graphene so as to open up a band gap. This way of modifying
graphene's electronic structure does not rely on external agencies, the
addition of new elements or special boundaries. The method is used to predict a
planar, low energy, graphene allotrope with a band gap of 1.2 eV. This defect
engineering also allows semiconducting ribbons of carbon to be fabricated
within graphene. Linear arrangements of defects lead to naturally embedded
ribbons of the semiconducting material in graphene, offering the prospect of
two-dimensional circuit logic composed entirely of carbon.Comment: 4 pages, 5 figure
Embedded Ribbons of Graphene Allotropes: An Extended Defect Perspective
Four fundamental dimer manipulations can be used to produce a variety of
localized and extended defect structures in graphene. Two-dimensional templates
result in graphene allotropes, here viewed as extended defects, which can
exhibit either metallic or semiconducting electrical character. \emph{Embedded
allotropic ribbons}--i.e. thin swaths of the new allotropes--can also be
created within graphene. We examine these ribbons and find that they maintain
the electrical character of their parent allotrope even when only a few atoms
in width. Such extended defects may facilitate the construction of monolithic
electronic circuitry.Comment: 24 pages, 21 figure
Disturbance can slow down litter decomposition, depending on severity of disturbance and season: an example from Mount Kilimanjaro
Deforestation and land-use change affect ecosystem processes such as carbon cycling. Here, we present results from a litter decomposition experiment in six natural and six disturbed vegetation types along an elevation gradient of 3600 m on the southern slopes of Mount Kilimanjaro, Tanzania. We exposed litter bags with a standard material for up to 12 weeks each in two seasons. In the cold wet season we sampled the full elevation gradient and in the warm wet season we repeated the sampling in the lower part of the elevation gradient. Though we found significantly negative effects of disturbance in forest ecosystems, this was only due to differences between natural and burned Podocarpus forests. Disturbance characterized by a more open vegetation structure in many of the studied vegetation types had no general effect when we studied the full elevation gradient; this also included non-forest vegetation types. Land-use intensity had a significant negative effect on decomposition rates but only in the warm wet season, not in the cold wet season. Temperature and humidity were the most important drivers of decomposition overall and for all subsets of vegetation types and seasons. Our study shows that negative effects of disturbance or land-use intensity on decomposition depended on the severity of disturbance and on the season. Nevertheless, climate was generally the most relevant driver of decomposition. Therefore, vegetation types with moderate levels of disturbance can retain high functionality in regards to carbon cycling over short periods of time. More and longer decomposition studies are necessary to better predict consequences of land-use change for carbon cycling in the Afrotropics.</p
Ambulatory assessment of psychophysiological stress among police officers: A proof-of-concept study.
Occupational stress has been widely recognized as a global challenge and has received increased attention by the academic community. Ambulatory Assessment methodologies, combining psychophysiological measures of stress, offer a promising avenue for future prevention and/or rehabilitation stress research. Considering that policing is well known for being a particularly stressful occupation, Emergency Responders Officers (EROs) stress levels were investigated. Particularly, this study analyzed: (i) physiological stress data obtained during shifts and compared these data with baseline levels (days off), as well as (ii) with normative values for healthy populations; (iii) stress symptoms differences from beginning to end of shift; (iv) stress events and events intensity and (v) the acceptability and feasibility of this proof-of-concept study in a highly stressful occupation. A Geo-location event system was used to help retrospective accounts of psychological stress, combined with electrocardiogram (ECG) data and mobile self-reports, that include stress symptoms, event types and event intensity. Results suggest that EROs experience high levels of stress (both on-duty and off duty) when compared to healthy populations. Stress symptoms increase from the beginning to end of the shift. However, the mean events intensity was very low. It can be concluded that stress may not always be diagnosed when using merely self-reports. These findings highlight the importance of combining both self-report and physiological stress measures in occupational health contexts. Finally, results confirm the acceptability and feasibility of the multi-method used. Key implications for policy makers and applied practitioners in the area of occupational health and future research directions are discussed
Extreme variations of pCO2 and pH in a macrophyte meadow of the Baltic Sea in summer: evidence of the effect of photosynthesis and local upwelling
The impact of ocean acidification on benthic habitats is a major preoccupation of the scientific community. However, the natural variability of pCO2 and pH in those habitats remains understudied, especially in temperate areas. In this study we investigated temporal variations of the carbonate system in nearshore macrophyte meadows of the western Baltic Sea. These are key benthic ecosystems, providing spawning and nursery areas as well as food to numerous commercially important species. In situ pCO2, pH (total scale), salinity and PAR irradiance were measured with a continuous recording sensor package dropped in a shallow macrophyte meadow (Eckernförde bay, western Baltic Sea) during three different weeks in July (pCO2 and PAR only), August and September 2011.The mean (± SD) pCO2 in July was 383±117 µatm. The mean (± SD) pCO2 and pHtot in August were 239±20 µatm and 8.22±0.1, respectively. The mean (± SD) pCO2 and pHtot in September were 1082±711 µatm and 7.83±0.40, respectively. Daily variations of pCO2 due to photosynthesis and respiration (difference between daily maximum and minimum) were of the same order of magnitude: 281±88 µatm, 219±89 μatm and 1488±574 µatm in July, August and September respectively. The observed variations of pCO2 were explained through a statistical model considering wind direction and speed together with PAR irradiance. At a time scale of days to weeks, local upwelling of elevated pCO2 water masses with offshore winds drives the variation. Within days, primary production is responsible. The results demonstrate the high variability of the carbonate system in nearshore macrophyte meadows depending on meteorology and biological activities. We highlight the need to incorporate these variations in future pCO2 scenarios and experimental designs for nearshore habitats
Eating disinhibition and vagal tone moderate the postprandial response to glycemic load: a randomised controlled trial
Reactivity Initiated Accident Test Series RIA Scoping Test Quick Look Report
The Reactivity Initiated Accident Scoping Test (RIA-ST) was successfully completed August 30, 1978. The test was introductory to the RIA Series 1 tests and was designed to investigate and resolve several anticipated problem areas prior to performance of the first test of the series, Test RIA 1-1. The RIA Scoping Test, as performed, consisted of four separate single-rod experiment phases. The first three phases were performed with shrouded fuel rods of 5.8 wt.% enrichment. They were subjected to power bursts resulting in total fuel surface energies ranging from 205 to 261 cal/q at the axial peak elevation. The fourth phase consisted of a 20 wt.% enriched, shrouded fuel rod which was subjected to a power hurst that deposited a total radially averaged energy of 527 cal/g. The primary objectives of the Scoping Test were defined as follows: (1) Determine the applicability of extrapolating low-power steady state calorimetric measurements and self-powered neutron detector (SPND) output to determine fuel rod energy depositions during a power burst. (2) Determine the enerqy deposition failure threshold for unirradiated fuel rods at BWR hot-startup coolant conditions. (3) Determine the magnitudes of oossible pressure pulses resulting from rod failure. (4) Determine the sensitivity of the test instrumentation to high transient radiation exposures. In general, the energy deposition values for the Scoping Test derived from the SPND output were 25% higher than those obtained from the core ion chamber data. Determining which values are correct will require radiochemical analysis of the fuel rods which will take several months. At present, it apoears that the SPND derived energies are in error because of excellent agreement between the calculated and measured power calibration results and the agreement between the predicted failure threshold and that seen using the core ion chamber derived energies. Meeting the second objective was accomplished during the first three test phases by subjecting the fuel rods to energy depositions which bracketed the failure threshold. The failure threshold in terms of total pellet surface energy at the axial flux peak was found to be between 218 cal/g where no rod failure occurred and 256 cal/g where · rod failure did occur. The experiment predictions indicated that the failure threshold would be 262 cal/g at the pellet surface. Only the fourth experiment phase (527 cal/g) resulted in a pressure pulse upon rod failure. The best indication of source pressure was the reading from a 69 MPa EG&G pressure transducer at the flow shroud inlet. This pressure transducer indicated a pressure pulse upon rod failure of 28.2 MPa with a rise time of 1.6 ms. The source pressure was attenuated considerably outside the shroud region as indicated by pressure transducers in the upper plenum of the in-pile tube and in the flow bypass region. The maximum pressure indicated outside the flow shroud was 2.1 MPa. In general, instrumentation sensitivity to radiation was minimal. The most significant instrumentation problem during the power bursts was a false flowrate indication by the flow turbines. This problem is being examined. The Kaman and Bell & Howell pressure transducers showed the least sensitivity to radiation of the pressure measurement devices. The EG&G transducers were most sensitive. The locked linear variable differential transformer (LVDT) gave no indication of radiation sensitivity as its response during the burst was a straight line. The strain gages were very sensitive to radiation, indicating a strain increase of 70% with the second burst of RIA-ST-1. The Type S thermocouple did not exhibit significant radiation sensitivity. In addition, the RIA Scoping Test has provided data on the consequences of fuel rod failure during a RIA event at BWR hot startup conditions. Posttest examination of the fuel rods from the first two phases of the test revealed large quantities of UO{sub 2} fuel missing from the cladding. Fuel rod failures for energy depositions near the failure threshold in previous closed capsule tests without forced coolant flow resulted in only a slight amount of fuel loss
ARTiiFACT: a tool for heart rate artifact processing and heart rate variability analysis
Counteranion-Dependent Reaction Pathways in the Protonation of Cationic Ruthenium−Vinylidene Complexes
The tetraphenylborate salts of the cationic vinylidene complexes [Cp*Ru=C=CHR(iPr2PNHPy)]+ (R = p-C6H4CF3 (1a-BPh4), Ph (1b-BPh4), p-C6H4CH3 (1c- BPh4), p-C6H4Br (1d-BPh4), tBu (1e-BPh4), H (1f-BPh4)) have been protonated using an excess of HBF4·OEt2 in CD2Cl2, furnishing the dicationic carbyne complexes [Cp*Ru≡CCH2R(iPr2PNHPy)]2+ (R = p-C6H4CF3 (2a), Ph (2b), p-C6H4CH3 (2c), p-C6H4Br (2d), tBu (2e), H (2f)), which were characterized in solution at low temperature by NMR spectroscopy. The corresponding reaction of the chloride salts 1a-Cl, 1b-Cl, 1c-Cl, and 1d-Cl followed a different pathway, instead affording the novel alkene complexes [Cp*RuCl(κ1(N),η2(C,C)-C5H4N-NHPiPr2CH=CHR)][BF4] (3a−d). In these species, the entering proton is located at the α- carbon atom of the former vinylidene ligand, which also forms a P−C bond with the phosphorus atom of the iPr2PNHPy ligand. To shed light on the reaction mechanism, DFT calculations have been performed by considering several protonation sites. The computational results suggest metal protonation followed by insertion. The coordination of chloride to ruthenium leads to alkenyl species which can undergo a P−C coupling to yield the corresponding alkene complexes. The noncoordinating nature of [BPh4]− does not allow the stabilization of the unsaturated species coming from the insertion step, thus preventing this alternative pathway
Молекулярно-генетичні характеристики аденовірусів, як збудників гострих діарей у жителів півдня України
The etiological role of adenoviruses as causative agents of acute diarrhea in the southern region of Ukraine was studied.
Adenovirus DNA was detected in 10.61±1.05 % of clinical stool samples. Serotypes of two gene groups: C and F were identified
during genotyping and sequencing of genetic material of detected adenovirus isolates. Gene group F (HAdV41), proves their role
in the occurrence of this infectious pathology. HAdV41 isolates had a significant advantage 75.0±15.31 % and had a pronounced
genetic heterogeneity, showed similarities with serotypes circulating in previous years in different regions of the world: Sweden
(1978), Japan (2003, 2006), South Africa (2009–2014), Iraq (2016). The obtained results allowed to establish the geographical
origin of circulating adenoviruses, as well as to predict a further increase in the intensity of the epidemic process of adenoviral
infections in southern Ukraine.Вивчали етіологічну роль аденовірусів, як збудників гострі діареї у жителів південного регіону України. ДНК
аденовірусів виявлені в клінічних зразках стільця хворих у 10,61±1,05 % випадків. При генотипуванні та секвенуванні
генетичного матеріалу виявлених ізолятів ідентифіковано серотипи двох геногруп: С та F. У 25,0±11,69 % хворих на гостру
діарею у вигляді моноінфекції було виявлено аденовіруси геногрупи С: HAdV2 і HadV5, що поряд з серотипами геногрупи
F (HAdV41), доводить їх роль у виникненні даної інфекційної патології. Ізоляти HAdV41 зустрічались із суттєвою перевагою
75,0±15,31 % та мали виражену генетичну гетерогенність, виявляючи подібність з серотипами, що циркулювали у попередні
роки у різних регіонах світу: в Швеції (1978 р.), Японії (2003, 2006 рр.), Південній Африці (2009–2014 рр.), в Іраку (2016 р.).
Отримані результати дозволили встановити географічне походження циркулюючих аденовірусів, прогнозувати подальше
зростання інтенсивності епідемічного процесу аденовірусної інфекцій на півдні України
- …
