464 research outputs found

    Precision mass measurements on neutron-rich rare-earth isotopes at JYFLTRAP - reduced neutron pairing and implications for the rr-process calculations

    Full text link
    The rare-earth peak in the rr-process abundance pattern depends sensitively on both the astrophysical conditions and subtle changes in nuclear structure in the region. This work takes an important step elucidating the nuclear structure and reducing the uncertainties in rr-process calculations via precise atomic mass measurements at the JYFLTRAP double Penning trap. 158^{158}Nd, 160^{160}Pm, 162^{162}Sm, and 164166^{164-166}Gd have been measured for the first time and the precisions for 156^{156}Nd, 158^{158}Pm, 162,163^{162,163}Eu, 163^{163}Gd, and 164^{164}Tb have been improved considerably. Nuclear structure has been probed via two-neutron separation energies S2nS_{2n} and neutron pairing energy metrics DnD_n. The data do not support the existence of a subshell closure at N=100N=100. Neutron pairing has been found to be weaker than predicted by theoretical mass models. The impact on the calculated rr-process abundances has been studied. Substantial changes resulting in a smoother abundance distribution and a better agreement with the solar rr-process abundances are observed.Comment: 8 pages, 4 figures, accepted for publication in Physical Review Letter

    Beta-decay of nuclei around Se-90. Search for signatures of a N=56 sub-shell closure relevant the r-process

    Full text link
    Nuclear structure plays a significant role on the rapid neutron capture process (r-process) since shapes evolve with the emergence of shells and sub-shells. There was some indication in neighboring nuclei that we might find examples of a new N=56 sub-shell, which may give rise to a doubly magic Se-90 nucleus. Beta-decay half lives of nuclei around Se-90 have been measured to determine if this nucleus has in fact a doubly-magic character. The fragmentation of Xe-136 beam at the National Superconducting Cyclotron Laboratory at Michigan State University was used to create a cocktail of nuclei in the A=90 region. We have measured the half lives of twenty-two nuclei near the r-process path in the A=90 region. The half lives of As-88 and Se-90 have been measured for the first time. The values were compared with theoretical predictions in the search for nuclear-deformation signatures of a N=56 sub-shell, and its possible role in the emergence of a potential doubly-magic Se-90. The impact of such hypothesis on the synthesis of heavy nuclei, particularly in the production of Sr, Y and Zr elements was investigated with a weak r-process network. The new half lives agree with results obtained from a standard global QRPA model used in r-process calculations, indicating that Se-90 has a quadrupole shape incompatible with a closed N=56 sub-shell in this region. The impact of the measured Se-90 half-life in comparison with a former theoretical predication associated with a spherical half-life on the weak-r-process is shown to be strong

    Beta-delayed-neutron studies of 135,136^{135,136}Sb and 140^{140}I performed with trapped ions

    Get PDF
    Beta-delayed-neutron (β\betan) spectroscopy was performed using the Beta-decay Paul Trap and an array of radiation detectors. The β\betan branching ratios and energy spectra for 135,136^{135,136}Sb and 140^{140}I were obtained by measuring the time of flight of recoil ions emerging from the trapped ion cloud. These nuclei are located at the edge of an isotopic region identified as having β\betan branching ratios that impact the r-process abundance pattern around the A~130 peak. For 135,136^{135,136}Sb and 140^{140}I, β\betan branching ratios of 14.6(11)%, 17.6(28)%, and 7.6(28)% were determined, respectively. The β\betan energy spectra obtained for 135^{135}Sb and 140^{140}I are compared with results from direct neutron measurements, and the β\betan energy spectrum for 136^{136}Sb has been measured for the first time

    TOF-Brho Mass Measurements of Very Exotic Nuclides for Astrophysical Calculations at the NSCL

    Full text link
    Atomic masses play a crucial role in many nuclear astrophysics calculations. The lack of experimental values for relevant exotic nuclides triggered a rapid development of new mass measurement devices around the world. The Time-of-Flight (TOF) mass measurements offer a complementary technique to the most precise one, Penning trap measurements, the latter being limited by the rate and half-lives of the ions of interest. The NSCL facility provides a well-suited infrastructure for TOF mass measurements of very exotic nuclei. At this facility, we have recently implemented a TOF-Brho technique and performed mass measurements of neutron-rich nuclides in the Fe region, important for r-process calculations and for calculations of processes occurring in the crust of accreting neutron stars.Comment: 8 pages, 4 figures, submitted to Journal of Physics G, proceedings of Nuclear Physics in Astrophysics II

    Measurement of conversion electrons with the 208Pb(p,n)208Bi^{208}Pb(p,n)^{208}Bi reaction and derivation of the shell model proton neutron hole interaction from the properties of 208Bi^{208}Bi

    Get PDF
    Conversion electrons from 208Bi have been measured using singles and coincidence techniques with the 208Pb(p,n)208Bi reaction at 9 MeV. The new information on multipolarities and spins complements that available from recent gamma-gamma-coincidence studies with the same reaction [Boutachkov et al., Nucl. Phys. A768, 22 (2006)]. The results on electromagnetic decays taken together with information on spectroscopic factors from earlier single-particle transfer reaction measurements represent an extensive data set on the properties of the one-proton one-neutron-hole states below 3 MeV, a spectrum which is virtually complete. Comparison of the experimental observables, namely, energies, spectroscopic factors, and gamma-branching ratios, with those calculated within the shell model allows extraction of the matrix elements of the shell model residual interaction. More than 100 diagonal and nondiagonal elements can be determined in this way, through a least squares fit to the experimental data. This adjustment of the interaction significantly affects the calculated properties of the gamma-ray transitions. Nevertheless, the matrix elements thus obtained are remarkably similar to those of a realistic interaction calculated from free-nucleon scattering. Characteristic features of the interaction are discussed

    Beta-decay half-lives and beta-delayed neutron emission probabilities of nuclei in the region below A=110, relevant for the r-process

    Full text link
    Measurements of the beta-decay properties of r-process nuclei below A=110 have been completed at the National Superconducting Cyclotron Laboratory, at Michigan State University. Beta-decay half-lives for Y-105, Zr-106,107 and Mo-111, along with beta-delayed neutron emission probabilities of Y-104, Mo-109,110 and upper limits for Y-105, Zr-103,104,105,106,107 and Mo-108,111 have been measured for the first time. Studies on the basis of the quasi-random phase approximation are used to analyze the ground-state deformation of these nuclei.Comment: 21 pages, 10 figures, article accepted for publication in Physical Review

    Peculiarities of sub-barrier fusion with quantum diffusion approach

    Full text link
    With the quantum diffusion approach the unexpected behavior of fusion cross section, angular momentum, and astrophysical S-factor at sub-barrier energies has been revealed. Out of the region of short-range nuclear interaction and action of friction at turning point the decrease rate of the cross section under the barrier becomes smaller. The calculated results for the reactions with spherical nuclei are in a good agreement with the existing experimental data.Comment: 11 pages, 5 figure

    Low-lying level structure of 56^{56}Cu and its implications on the rp process

    Full text link
    The low-lying energy levels of proton-rich 56^{56}Cu have been extracted using in-beam γ\gamma-ray spectroscopy with the state-of-the-art γ\gamma-ray tracking array GRETINA in conjunction with the S800 spectrograph at the National Superconducting Cyclotron Laboratory at Michigan State University. Excited states in 56^{56}Cu serve as resonances in the 55^{55}Ni(p,γ\gamma)56^{56}Cu reaction, which is a part of the rp-process in type I x-ray bursts. To resolve existing ambiguities in the reaction Q-value, a more localized IMME mass fit is used resulting in Q=639±82Q=639\pm82~keV. We derive the first experimentally-constrained thermonuclear reaction rate for 55^{55}Ni(p,γ\gamma)56^{56}Cu. We find that, with this new rate, the rp-process may bypass the 56^{56}Ni waiting point via the 55^{55}Ni(p,γ\gamma) reaction for typical x-ray burst conditions with a branching of up to \sim40%\%. We also identify additional nuclear physics uncertainties that need to be addressed before drawing final conclusions about the rp-process reaction flow in the 56^{56}Ni region.Comment: 8 pages, accepted for Phys. Rev.
    corecore