265 research outputs found

    The PLATO End-to-End CCD Simulator -- Modelling space-based ultra-high precision CCD photometry for the assessment study of the PLATO Mission

    Full text link
    The PLATO satellite mission project is a next generation ESA Cosmic Vision satellite project dedicated to the detection of exo-planets and to asteroseismology of their host-stars using ultra-high precision photometry. The main goal of the PLATO mission is to provide a full statistical analysis of exo-planetary systems around stars that are bright and close enough for detailed follow-up studies. Many aspects concerning the design trade-off of a space-based instrument and its performance can best be tackled through realistic simulations of the expected observations. The complex interplay of various noise sources in the course of the observations made such simulations an indispensable part of the assessment study of the PLATO Payload Consortium. We created an end-to-end CCD simulation software-tool, dubbed PLATOSim, which simulates photometric time-series of CCD images by including realistic models of the CCD and its electronics, the telescope optics, the stellar field, the pointing uncertainty of the satellite (or Attitude Control System [ACS] jitter), and all important natural noise sources. The main questions that were addressed with this simulator were the noise properties of different photometric algorithms, the selection of the optical design, the allowable jitter amplitude, and the expected noise budget of light-curves as a function of the stellar magnitude for different parameter conditions. The results of our simulations showed that the proposed multi-telescope concept of PLATO can fulfil the defined scientific goal of measuring more than 20000 cool dwarfs brighter than mV =11 with a precision better than 27 ppm/h which is essential for the study of earth-like exo-planetary systems using the transit method.Comment: 5 pages, submitted for the Proceedings of the 4th HELAS International Conference: Seismological Challenges for Stellar Structur

    Stellar Oscillations Network Group

    Full text link
    Stellar Oscillations Network Group (SONG) is an initiative aimed at designing and building a network of 1m-class telescopes dedicated to asteroseismology and planet hunting. SONG will have 8 identical telescope nodes each equipped with a high-resolution spectrograph and an iodine cell for obtaining precision radial velocities and a CCD camera for guiding and imaging purposes. The main asteroseismology targets for the network are the brightest (V<6) stars. In order to improve performance and reduce maintenance costs the instrumentation will only have very few modes of operation. In this contribution we describe the motivations for establishing a network, the basic outline of SONG and the expected performance.Comment: Proc. Vienna Workshop on the Future of Asteroseismology, 20 - 22 September 2006. Comm. in Asteroseismology, Vol. 150, in the pres

    The role of turbulent pressure as a coherent pulsational driving mechanism: the case of the delta Scuti star HD 187547

    Get PDF
    HD 187547 was the first candidate that led to the suggestion that solar-like oscillations are present in delta Scuti stars. Longer observations, however, show that the modes interpreted as solar-like oscillations have either very long mode lifetimes, longer than 960 days, or are coherent. These results are incompatible with the nature of `pure' stochastic excitation as observed in solar-like stars. Nonetheless, one point is certain: the opacity mechanism alone cannot explain the oscillation spectrum of HD 187547. Here we present new theoretical investigations showing that convection dynamics can intrinsically excite coherent pulsations in the chemically peculiar delta Scuti star HD 187547. More precisely, it is the perturbations of the mean Reynold stresses (turbulent pressure) that drives the pulsations and the excitation takes place predominantly in the hydrogen ionization zone.Comment: 8 pages, 4 figures, accepted to Ap

    Oscillations in the Sun with SONG: Setting the scale for asteroseismic investigations

    Full text link
    Context. We present the first high-cadence multi-wavelength radial-velocity observations of the Sun-as-a-star, carried out during 57 consecutive days using the stellar \'echelle spectrograph at the Hertzsprung SONG Telescope operating at the Teide Observatory. Aims. The aim was to produce a high-quality data set and reference values for the global helioseismic parameters {\nu_{max}}, and {\Delta \nu} of the solar p-modes using the SONG instrument. The obtained data set or the inferred values should then be used when the scaling relations are applied to other stars showing solar-like oscillations which are observed with SONG or similar instruments. Methods. We used different approaches to analyse the power spectrum of the time series to determine {\nu_{max}}; simple Gaussian fitting and heavy smoothing of the power spectrum. {\Delta\nu} was determined using the method of autocorrelation of the power spectrum. The amplitude per radial mode was determined using the method described in Kjeldsen et al. (2008). Results. We found the following values for the solar oscillations using the SONG spectrograph: {\nu_{max}} = 3141 {\pm} 12 {\mu}Hz, {\Delta\nu} = 134.98 {\pm} 0.04 {\mu}Hz and an average amplitude of the strongest radial modes of 16.6 {\pm} 0.4 cm/s. These values are consistent with previous measurements with other techniques.Comment: 5 pages, 5 figures, letter accepted for A&

    SPB stars in the open SMC cluster NGC 371

    Full text link
    Pulsation in beta Cep and SPB stars are driven by the kappa mechanism which depends critically on the metallicity. It has therefore been suggested that beta Cep and SPB stars should be rare in the Magellanic Clouds which have lower metallicities than the solar neighborhood. To test this prediction we have observed the open SMC cluster NGC 371 for 12 nights in order to search for beta Cep and SPB stars. Surprisingly, we find 29 short-period B-type variables in the upper part of the main sequence, many of which are probably SPB stars. This result indicates that pulsation is still driven by the kappa mechanism even in low metallicity environments. All the identified variables have periods longer than the fundamental radial period which means that they cannot be beta Cep stars. Within an amplitude detection limit of 5 mmag no stars in the top of the HR-diagram show variability with periods shorter than the fundamental radial period. So if beta Cep stars are present in the cluster they oscillate with amplitudes below 5 mmag, which is significantly lower than the mean amplitude of beta Cep stars in the Galaxy. We see evidence that multimode pulsation is more common in the upper part of the main sequence than in the lower. We have also identified 5 eclipsing binaries and 3 periodic pulsating Be stars in the cluster field.Comment: 8 pages, 11 figures. Accepted for publication in MNRA

    Testing the asymptotic relation for period spacings from mixed modes of red giants observed with the Kepler mission

    Get PDF
    Dipole mixed pulsation modes of consecutive radial order have been detected for thousands of low-mass red-giant stars with the NASA space telescope Kepler. Such modes have the potential to reveal information on the physics of the deep stellar interior. Different methods have been proposed to derive an observed value for the gravity-mode period spacing, the most prominent one relying on a relation derived from asymptotic pulsation theory applied to the gravity-mode character of the mixed modes. Our aim is to compare results based on this asymptotic relation with those derived from an empirical approach for three pulsating red-giant stars. We developed a data-driven method to perform frequency extraction and mode identification. Next, we used the identified dipole mixed modes to determine the gravity-mode period spacing by means of an empirical method and by means of the asymptotic relation. In our methodology, we consider the phase offset, ϵg\epsilon_{\mathrm{g}}, of the asymptotic relation as a free parameter. Using the frequencies of the identified dipole mixed modes for each star in the sample, we derived a value for the gravity-mode period spacing using the two different methods. These differ by less than 5%. The average precision we achieved for the period spacing derived from the asymptotic relation is better than 1%, while that of our data-driven approach is 3%. Good agreement is found between values for the period spacing derived from the asymptotic relation and from the empirical method. Full abstract in PDF file.Comment: 14 pages, 13 figures, accepted for publication in A&
    corecore