1,222 research outputs found

    Security of Quantum Key Distribution with Coherent States and Homodyne Detection

    Full text link
    We assess the security of a quantum key distribution protocol relying on the transmission of Gaussian-modulated coherent states and homodyne detection. This protocol is shown to be equivalent to a squeezed state protocol based on a CSS code construction, and is thus provably secure against any eavesdropping strategy. We also briefly show how this protocol can be generalized in order to improve the net key rate.Comment: 7 page

    Secure Coherent-state Quantum Key Distribution Protocols with Efficient Reconciliation

    Full text link
    We study the equivalence between a realistic quantum key distribution protocol using coherent states and homodyne detection and a formal entanglement purification protocol. Maximally-entangled qubit pairs that one can extract in the formal protocol correspond to secret key bits in the realistic protocol. More specifically, we define a qubit encoding scheme that allows the formal protocol to produce more than one entangled qubit pair per coherent state, or equivalently for the realistic protocol, more than one secret key bit. The entanglement parameters are estimated using quantum tomography. We analyze the properties of the encoding scheme and investigate its application to the important case of the attenuation channel.Comment: REVTeX, 11 pages, 2 figure

    Critical behavior in Angelesco ensembles

    Full text link
    We consider Angelesco ensembles with respect to two modified Jacobi weights on touching intervals [a,0] and [0,1], for a < 0. As a \to -1 the particles around 0 experience a phase transition. This transition is studied in a double scaling limit, where we let the number of particles of the ensemble tend to infinity while the parameter a tends to -1 at a rate of order n^{-1/2}. The correlation kernel converges, in this regime, to a new kind of universal kernel, the Angelesco kernel K^{Ang}. The result follows from the Deift/Zhou steepest descent analysis, applied to the Riemann-Hilbert problem for multiple orthogonal polynomials.Comment: 32 pages, 9 figure

    Historic buildings and the creation of experiencescapes: looking to the past for future success

    Get PDF
    Purpose: The purpose of this paper is to identify the role that the creative re-use of historic buildings can play in the future development of the experiences economy. The aesthetic attributes and the imbued historic connotation associated with the building help create unique and extraordinary “experiencescapes” within the contemporary tourism and hospitality industries. Design/methodology/approach: This paper provides a conceptual insight into the creative re-use of historic buildings in the tourism and hospitality sectors, the work draws on two examples of re-use in the UK. Findings: This work demonstrates how the creative re-use of historic buildings can help create experiences that are differentiated from the mainstream hospitality experiences. It also identifies that it adds an addition unquantifiable element that enables the shift to take place from servicescape to experiencescape. Originality/value: There has been an ongoing debate as to the significance of heritage in hospitality and tourism. However, this paper provides an insight into how the practical re-use of buildings can help companies both benefit from and contribute to the experiences economy

    Large n limit of Gaussian random matrices with external source, Part III: Double scaling limit

    Full text link
    We consider the double scaling limit in the random matrix ensemble with an external source \frac{1}{Z_n} e^{-n \Tr({1/2}M^2 -AM)} dM defined on n×nn\times n Hermitian matrices, where AA is a diagonal matrix with two eigenvalues ±a\pm a of equal multiplicities. The value a=1a=1 is critical since the eigenvalues of MM accumulate as nn \to \infty on two intervals for a>1a > 1 and on one interval for 0<a<10 < a < 1. These two cases were treated in Parts I and II, where we showed that the local eigenvalue correlations have the universal limiting behavior known from unitary random matrix ensembles. For the critical case a=1a=1 new limiting behavior occurs which is described in terms of Pearcey integrals, as shown by Br\'ezin and Hikami, and Tracy and Widom. We establish this result by applying the Deift/Zhou steepest descent method to a 3×33 \times 3-matrix valued Riemann-Hilbert problem which involves the construction of a local parametrix out of Pearcey integrals. We resolve the main technical issue of matching the local Pearcey parametrix with a global outside parametrix by modifying an underlying Riemann surface.Comment: 36 pages, 9 figure

    Quantum Distribution of Gaussian Keys with Squeezed States

    Full text link
    A continuous key distribution scheme is proposed that relies on a pair of canonically conjugate quantum variables. It allows two remote parties to share a secret Gaussian key by encoding it into one of the two quadrature components of a single-mode electromagnetic field. The resulting quantum cryptographic information vs disturbance tradeoff is investigated for an individual attack based on the optimal continuous cloning machine. It is shown that the information gained by the eavesdropper then simply equals the information lost by the receiver.Comment: 5 pages, RevTe

    The Measure of the Orthogonal Polynomials Related to Fibonacci Chains: The Periodic Case

    Full text link
    The spectral measure for the two families of orthogonal polynomial systems related to periodic chains with N-particle elementary unit and nearest neighbour harmonic interaction is computed using two different methods. The interest is in the orthogonal polynomials related to Fibonacci chains in the periodic approximation. The relation of the measure to appropriately defined Green's functions is established.Comment: 19 pages, TeX, 3 scanned figures, uuencoded file, original figures on request, some misprints corrected, tbp: J. Phys.
    corecore