25,672 research outputs found
Elimination of subharmonics in direct look-up table (DLT) sine wave reference generators for low-cost microprocessor-controlled inverters
This paper investigates distortion of an inverter reference waveform generated using a direct look-up (DLT) algorithm. The sources of various distortion components are identified and the implications for application to variable speed drives and grid connected inverters are described. Harmonic and subharmonic distortion mechanisms are analyzed, and compared with experimental results. Analytical methods are derived to determine the occurrence of subharmonics, their number, frequencies and maximum amplitudes. A relationship is established identifying a discrete set of synthesizable frequencies which avoid sub-harmonic distortion as a function of look-up table length and a practical method for calculation of the look-up table indices, based on finite length binary representation, is presented. Real time experimental results are presented to verify the analytical derivations
Contributions to workload of rotational optical transformations
An investigation of visuomotor adaptation to optical rotation and optical inversion was conducted. Experiment 1 examined the visuomotor adaptability of subjects to an optically rotating visual world with a univariate repeated measures design. Experiment 1A tested one major prediction of a model of adaptation put forth by Welch who predicted that the aversive drive state that triggers adaptation would be habituated to fairly rapidly. Experiment 2 was conducted to investigate the role of motor activity in adaptation to optical rotation. Specifically, this experiment contrasted the reafference hypothesis and the proprioceptive change hypothesis. Experiment 3 examined the role of cognition, error-corrective feedback, and proprioceptive and/or reafferent feedback in visuomotor adaptation to optical inversion. Implications for research and implications for practice were suggested for all experiments
Design and evaluation of dynamic policy-based flow redirection for multihomed mobile netwotks
This paper presents the design, implementation and evaluation of a solution for dynamic redirection of traffic flows for multihomed mobile networks. The solution was developed for a mobile user that disposes of a Personal Area Network (PAN) with a Personal Mobile Router (PMR), in order to achieve Always Best Connected(ABC) service by distributing flows belonging to different applications among the most appropriate access networks. Designed in a modular way for a NEMO based mobility and multihoming support, the proposed flow redirection solution can be easily coupled with and controlled by dynamic traffic policies that come from advanced network intelligence, according to the currently available network resources and user and application requirements. A prototype implementation was validated and assessed on a testbed as proof-of-concept
Van der Waals interactions in the ground state of Mg(BH4)2 from density functional theory
In order to resolve an outstanding discrepancy between experiment and theory
regarding the ground-state structure of Mg(BH4)2, we examine the importance of
long-range dispersive interactions on the compound's thermodynamic stability.
Careful treatment of the correlation effects within a recently developed
nonlocal van der Waals density functional (vdW-DF) leads to a good agreement
with experiment, favoring the {\alpha}-Mg(BH4)2 phase (P6122) and a closely
related Mn(BH4)2-prototype phase (P3112) over a large set of polymorphs at low
temperatures. Our study demonstrates the need to go beyond (semi)local density
functional approximations for a reliable description of crystalline high-valent
metal borohydrides.Comment: Phys. Rev. B, accepted, 7 pages, 4 figure
Suppression of line voltage related distortion in current controlled grid connected inverters
The influence of selected control strategies on the level
of low-order current harmonic distortion generated by an inverter
connected to a distorted grid is investigated through a combination
of theoretical and experimental studies. A detailed theoretical
analysis, based on the concept of harmonic impedance, establishes
the suitability of inductor current feedback versus output
current feedback with respect to inverter power quality. Experimental
results, obtained from a purpose-built 500-W, three-level,
half-bridge inverter with an L-C-L output filter, verify the efficacy of inductor current as the feedback variable, yielding an
output current total harmonic distortion (THD) some 29% lower
than that achieved using output current feedback. A feed-forward
grid voltage disturbance rejection scheme is proposed as a means to
further reduce the level of low-order current harmonic distortion.
Results obtained from an inverter with inductor current feedback
and optimized feed-forward disturbance rejection show a THD of
just 3% at full-load, representing an improvement of some 53% on
the same inverter with output current feedback and no feed-forward
compensation. Significant improvements in THD were also
achieved across the entire load range. It is concluded that the use
of inductor current feedback and feed-forward voltage disturbance
rejection represent cost–effect mechanisms for achieving improved
output current quality
Use of synchrotron tomographic techniques in the assessment of diffusion parameters for solute transport in groundwater flow
This technical note describes the use of time-resolved synchrotron radiation tomographic energy dispersive diffraction imaging (TEDDI) and tomographic X-ray fluorescence (TXRF) for examining ion diffusion in porous media. The technique is capable of tracking the diffusion of several ion species simultaneously. This is illustrated by results which compare the movement of Cs+, Ba2+ and La3+ ions from solution into a typical sample of English chalk. The results exhibited somewhat anomalous (non-Fickian) behaviour and revealed heterogeneities (in 1D) on the scale of a few millimetres
Recommended from our members
Nasal administration of glutamate decarboxylase (GAD65) peptides induces Th2 responses and prevents murine insulin-dependent diabetes.
We previously demonstrated that a spontaneous Th1 response against glutamate decarboxylase (GAD65) arises in NOD mice at four weeks in age and subsequently T cell autoimmunity spreads both intramolecularly and intermolecularly. Induction of passive tolerance to GAD65, through inactivation of reactive T cells before the onset of autoimmunity, prevented determinant spreading and the development of insulin-dependent diabetes mellitus (IDDM). Here, we examined whether an alternative strategy, designed to induce active tolerance via the engagement of Th2 immune responses to GAD65, before the spontaneous onset of autoimmunity, could inhibit the cascade of Th1 responses that lead to IDDM. We observed that a single intranasal administration of GAD65 peptides to 2-3-wk-old NOD mice induced high levels of IgG1 antibodies to GAD65. GAD65 peptide treated mice displayed greatly reduced IFN gamma responses and increased IL-5 responses to GAD65, confirming the diversion of the spontaneous GAD65 Th1 response toward a Th2 phenotype. Consistent with the induction of an active tolerance mechanism, splenic CD4+ (but not CD8+) T cells from GAD65 peptide-treated mice, inhibited the adoptive transfer of IDDM to NOD-scid/scid mice. This active mechanism not only inhibited the development of proliferative T cell responses to GAD65, it also limited the expansion of autoreactive T cell responses to other beta cell antigens (i.e., determinant spreading). Finally, GAD65 peptide treatment reduced insulitis and long-term IDDM incidence. Collectively, these data suggest that the nasal administration of GAD65 peptides induces a Th2 cell response that inhibits the spontaneous development of autoreactive Th1 responses and the progression of beta cell autoimmunity in NOD mice
Multiplicative renormalizability and quark propagator
The renormalized Dyson-Schwinger equation for the quark propagator is
studied, in Landau gauge, in a novel truncation which preserves multiplicative
renormalizability. The renormalization constants are formally eliminated from
the integral equations, and the running coupling explicitly enters the kernels
of the new equations. To construct a truncation which preserves multiplicative
renormalizability, and reproduces the correct leading order perturbative
behavior, non-trivial cancellations involving the full quark-gluon vertex are
assumed in the quark self-energy loop. A model for the running coupling is
introduced, with infrared fixed point in agreement with previous
Dyson-Schwinger studies of the gauge sector, and with correct logarithmic tail.
Dynamical chiral symmetry breaking is investigated, and the generated quark
mass is of the order of the extension of the infrared plateau of the coupling,
and about three times larger than in the Abelian approximation, which violates
multiplicative renormalizability. The generated scale is of the right size for
hadronic phenomenology, without requiring an infrared enhancement of the
running coupling.Comment: 17 pages; minor corrections, comparison to lattice results added;
accepted for publication in Phys. Rev.
- …
