346 research outputs found
Nanomaterial interactions with biomembranes: Bridging the gap between soft matter models and biological context
Synthetic polymers, nanoparticles, and carbon-based materials have great potential in applications including drug delivery, gene transfection, in vitro and in vivo imaging, and the alteration of biological function. Nature and humans use different design strategies to create nanomaterials: biological objects have emerged from billions of years of evolution and from adaptation to their environment resulting in high levels of structural complexity; in contrast, synthetic nanomaterials result from minimalistic but controlled design options limited by the authors' current understanding of the biological world. This conceptual mismatch makes it challenging to create synthetic nanomaterials that possess desired functions in biological media. In many biologically relevant applications, nanomaterials must enter the cell interior to perform their functions. An essential transport barrier is the cell-protecting plasma membrane and hence the understanding of its interaction with nanomaterials is a fundamental task in biotechnology. The authors present open questions in the field of nanomaterial interactions with biological membranes, including: how physical mechanisms and molecular forces acting at the nanoscale restrict or inspire design options; which levels of complexity to include next in computational and experimental models to describe how nanomaterials cross barriers via passive or active processes; and how the biological media and protein corona interfere with nanomaterial functionality. In this Perspective, the authors address these questions with the aim of offering guidelines for the development of next-generation nanomaterials that function in biological media
Effect of transport-induced charge inhomogeneity on point-contact Andreev reflection spectra at ferromagnet-superconductor interfaces
We investigate the transport properties of a ferromagnet-superconductor
interface within the framework of a modified three-dimensional
Blonder-Tinkham-Klapwijk formalism. In particular, we propose that charge
inhomogeneity forms via two unique transport mechanisms, namely, evanescent
Andreev reflection and evanescent quasiparticle transmission. Furthermore, we
take into account the influence of charge inhomogeneity on the interfacial
barrier potential and calculate the conductance as a function of bias voltage.
Point-contact Andreev reflection (PCAR) spectra often show dip structures,
large zero-bias conductance enhancement, and additional zero-bias conductance
peak. Our results indicate that transport-induced charge inhomogeneity could be
a source of all these anomalous characteristics of the PCAR spectra.Comment: 9 pages, 6 figure
Modular Ion Mobility Calibrants for Organometallic Anions Based on Tetraorganylborate Salts
Organometallics are widely used in catalysis and synthesis. Their analysis relies heavily on mass spectrometric methods, among which traveling-wave ion mobility spectrometry (TWIMS) has gained increasing importance. Collision cross sections (CCS) obtainable by TWIMS significantly aid the structural characterization of ions in the gas phase, but for organometallics, their accuracy has been limited by the lack of appropriate calibrants. Here, we propose tetraorganylborates and their alkali-metal bound oligomers [Mn–1(BR4)n]− (M = Li, Na, K, Rb, Cs; R = aryl, Et; n = 1–6) as calibrants for electrospray ionization (ESI) TWIMS. These species chemically resemble typical organometallics and readily form upon negative-ion mode ESI of solutions of alkali-metal tetraorganylborates. By combining different tetraorganylborate salts, we have generated a large number of anions in a modular manner and determined their CCS values by drift-tube ion mobility spectrometry (DTIMS) (DTCCSHe = 81–585, DTCCSN2 = 130–704 Å2). In proof-of-concept experiments, we then applied these DTCCS values to the calibration of a TWIMS instrument and analyzed phenylcuprate and argentate anions, [Lin–1MnPh2n]− and [MnPhn+1]− (M = Cu, Ag), as prototypical reactive organometallics. The TWCCSN2 values derived from TWIMS measurements are in excellent agreement with those determined by DTIMS (<2% relative difference), demonstrating the effectiveness of the proposed calibration scheme. Moreover, we used theoretical methods to predict the structures and CCS values of the anions considered. These predictions are in good agreement with the experimental results and give further insight into the trends governing the assembly of tetraorganylborate, cuprate, and argentate oligomers
Spintronics: Fundamentals and applications
Spintronics, or spin electronics, involves the study of active control and
manipulation of spin degrees of freedom in solid-state systems. This article
reviews the current status of this subject, including both recent advances and
well-established results. The primary focus is on the basic physical principles
underlying the generation of carrier spin polarization, spin dynamics, and
spin-polarized transport in semiconductors and metals. Spin transport differs
from charge transport in that spin is a nonconserved quantity in solids due to
spin-orbit and hyperfine coupling. The authors discuss in detail spin
decoherence mechanisms in metals and semiconductors. Various theories of spin
injection and spin-polarized transport are applied to hybrid structures
relevant to spin-based devices and fundamental studies of materials properties.
Experimental work is reviewed with the emphasis on projected applications, in
which external electric and magnetic fields and illumination by light will be
used to control spin and charge dynamics to create new functionalities not
feasible or ineffective with conventional electronics.Comment: invited review, 36 figures, 900+ references; minor stylistic changes
from the published versio
The response of fish larvae to decadal changes in environmental forcing factors off the Oregon coast
We conducted a statistical analysis to characterize the influence of large-scale and local environmental factors on presence-absence, concentration, and assemblage structure of larval fish within the northern California Current (NCC) ecosystem, based on samples collected at two nearshore stations along the Newport Hydrographic line off the central Oregon coast. Data from 1996 to 2005 were compared with historical data from the 1970s and 1980s to evaluate pseudo-decadal, annual, and seasonal variability. Our results indicate that the most abundant taxa from 1996 to 2005 differ from those of earlier decades. Concentrations of the dominant taxa and total larvae were generally greater in the winter ⁄ spring than summer ⁄ fall season. Using generalized additive modeling, variations in presence-absence and concentration of taxa were compared to climate indices such as the Pacific Decadal Oscillation, Northern Oscillation Index, and the multivariate ENSO index and local environmental factors, such as upwelling, Ekman transport, and wind stress curl. Significant relationships were found for various combinations of environmental variables with lag periods ranging from 0 to 7 months. We found that the large-scale climate indices explained more of the variance in larval fish concentration and diversity than did the more local factors. Our results indicate that readily available oceanographic and climate indices can explain variations in the dominant ichthyoplankton taxa in the NCC. However, variation in response among taxa to the environmental metrics suggests additional unknown factors not included in the analysis likely contributed to the observed distribution patterns and larval fish community structure in the NCC
Antibody concentrations decrease 14-fold in children with celiac disease on a gluten-free diet but remain high at 3 months
Background & Aims Celiac disease can be identified by a serologic test for IgA against tissue transglutaminase (IgA-TTG) in a large proportion of children. However, the increased concentrations of antibody rarely normalize within the months after children are placed on a gluten-free diet (GFD). Early serologic predictors of sufficient adherence to gluten-free diet are required for optimal treatment. Methods In a prospective study, we observed the response to a GFD in 345 pediatric patients (67% girls; mean age, 8.4 y) who underwent duodenal biopsy to confirm or refute celiac disease from October 2012 through December 2015. Baseline serum samples were tested centrally for IgA-TTG and IgG against deamidated gliadin. Follow-up serologic analyses of children on a GFD were performed about 3 months later. Results The geometric mean concentration of IgA-TTG decreased from 72.4-fold to 5.2-fold the upper limit of normal (ULN), or by a factor of 14.0 (95% CI, 12.0–16.4). A substantial response (defined as a larger change than the typical variation in patients not on a GFD) was observed in 80.6% of the children. Only 28.1% of patients had a substantial response in the concentration of IgG against deamidated gliadin. Concentration of IgA-TTG remained above 1-fold the ULN in 83.8% of patients, and above 10-fold the ULN in 26.6% of patients with a substantial response. Conclusions Serum concentration of IgA-TTG decreases substantially in most children with celiac disease within 3 months after they are placed on a GFD, but does not normalize in most. This information on changes in antibody concentrations can be used to assess patient response to the diet at short-term follow-up evaluations. Patients with a substantial response to a GFD often still have high antibody levels after 3 months. German Clinical Trials Registry no. DRKS00003854
Population projections of Pacific sardine driven by ocean warming and changing food availability in the California Current
Small pelagic fish are important marine ecosystem components and highly variable fisheries resources. In the California Current upwelling system, Pacific sardine (Sardinops sagax) has supported important fisheries in the past, but contrary to expectations, remains at low biomass despite recent warm ocean conditions. We developed a data-driven, process-based population model that reproduces fluctuations of the US Pacific sardine population based on ocean temperature, early life stage and adult food, and upwelling strength. The lack of sardine recovery after 2014 can be explained by reduced food availability. Ensemble projections for the 21st century driven by downscaled ocean-biogeochemical simulations under three Earth system models (ESMs) show a likely recovery to early 2000s sardine abundance and catch by mid-century, due to increased recruitment. Ecological process uncertainty (ensemble configuration range) is of the same magnitude as uncertainty among ESM projections, and uncertainty related to the thermal optimum of early life stages dominates after 2070. Even for a fish species presumably favoured by warmer conditions, future climate projections entail risks of stock declines in food-limited years and when passing unknown thermal optima. Quantification of combined environmental driver impacts and sources of uncertainty to projections under novel conditions open new pathways for environment-responsive fisheries management strategies
Bending elasticity of a curved amphiphilic film decorated anchored copolymers: a small angle neutron scattering study
Microemulsion droplets (oil in water stabilized by a surfactant film) are
progressively decorated with increasing amounts of poly ethylene- oxide (PEO)
chains anchored in the film by the short aliphatic chain grafted at one end of
the PEO chain . The evolution of the bending elasticity of the surfactant film
with increasing decoration is deduced from the evolution in size and
polydispersity of the droplets as reflected by small angle neutron scattering.
The optimum curvature radius decreases while the bending rigidity modulus
remains practically constant. The experimental results compare well with the
predictions of a model developed for the bending properties of a curved film
decorated by non-adsorbing polymer chains, which takes into account, the finite
curvature of the film and the free diffusion of the chains on the film.Comment: 30 June 200
Recommended from our members
Marine Heatwaves and Climate‐Driven Warming Impact Availability of Sardine Subpopulations to Northeast Pacific Fishing Ports
ABSTRACT:
Changing ocean conditions are leading to spatial redistribution of many marine species, including those that support fisheries. A combination of gradual climate trends and shorter‐lived extreme events, such as marine heatwaves, can change the availability of species or stocks to fishing ports, impacting fishing communities and challenging fisheries management frameworks. Pacific sardine (Sardinops sagax) in the California Current System are currently considered as two subpopulations for management purposes. They are separated from each other using oceanographic conditions, based on the assumption that each subpopulation is associated with different habitats and geographic areas. However, as climate change and marine heatwaves lead to increasingly novel environmental conditions in the region, habitat‐based assignments may become impractical or unrealistic. In this study, we use generalized additive models to define sea surface temperature and surface chlorophyll conditions associated with the occurrence of multiple sardine life stages in fishery‐independent surveys conducted in the California Current System. We then show how the spatial distribution of habitats across life stages and putative subpopulations may be influenced by both gradual climate change and marine heatwaves. Our results highlight the potential impacts of changing ocean conditions near major sardine landing ports. During recent marine heatwaves, habitat associated with the northern subpopulation became less available to southern California Current ports, and this trend is projected to continue through the end of the 21st century. Future spatial shifts in sardine habitat may increasingly challenge the practicality of habitat‐based subpopulation separation and introduce more uncertainty into management frameworks
- …
