5,007 research outputs found
Measurements of interactions between acoustic fields and nonuniform mean flow
Two problems crucial to the stability of longitudinal acoustic waves in solid rocket motors are examined experimentally. The first is the dissipation of energy associated with an average flow inward at the lateral boundary. Measurements reported here, though subject to considerable experimental error, show that the actual
losses are much larger than predicted by the approximate one dimensional analysis. The second problem is the attenuation of waves accompanying reflection by the nonuniform flow in a choked exhaust nozzle. Empahsis in this work has been on technique, to provide data relatively easily and inexpensively. It appears that good results can be obtained in a routine manner using small supersonic wind tunnel operated as an open cycle. At least for Mach
numbers up to 0.04 at the nozzle entrance, difficulties with signal/noise are satisfactorily overcome with a tracking filter
Color constancy for landmark detection in outdoor environments
European Workshop on Advanced Mobile Robots (EUROBOT), 2001, Lund (Suecia)This work presents an evaluation of three color constancy techniques applied to a landmark detection system designed for a walking robot, which has to operate in unknown and unstructured outdoor environments. The first technique is the well-known image conversion to a chromaticity space, and the second technique is based on successive lighting intensity and illuminant color normalizations. Based on a differential model of color constancy, we propose the third technique, based on color ratios, which unifies the processes of color constancy and landmark detection. The approach used to detect potential landmarks, which is common to all evaluated systems, is based on visual saliency concepts using multiscale color opponent features to identify salient regions in the images. These regions are selected as landmark candidates, and they are further characterized by their features for identification and recognition.This work was supported by the project 'Navegación autónoma de robots guiados por objetivos visuales' (070-720).Peer Reviewe
Photodesorption of CO ice
At the high densities and low temperatures found in star forming regions, all
molecules other than H2 should stick on dust grains on timescales shorter than
the cloud lifetimes. Yet these clouds are detected in the millimeter lines of
gaseous CO. At these temperatures, thermal desorption is negligible and hence a
non-thermal desorption mechanism is necessary to maintain molecules in the gas
phase. Here, the first laboratory study of the photodesorption of pure CO ice
under ultra high vacuum is presented, which gives a desorption rate of 3E-3 CO
molecules per UV (7-10.5 eV) photon at 15 K. This rate is factors of 1E2-1E5
larger than previously estimated and is comparable to estimates of other
non-thermal desorption rates. The experiments constrains the mechanism to a
single photon desorption process of ice surface molecules. The measured
efficiency of this process shows that the role of CO photodesorption in
preventing total removal of molecules in the gas has been underestimated.Comment: 5 pages, 4 figures, accepted by ApJ
Domain wall-based spin-Hall nano-oscillators
In the last decade, two revolutionary concepts in nano magnetism emerged from
research for storage technologies and advanced information processing. The
first suggests the use of magnetic domain walls (DWs) in ferromagnetic
nanowires to permanently store information in DW racetrack memories. The second
proposes a hardware realisation of neuromorphic computing in nanomagnets using
nonlinear magnetic oscillations in the GHz range. Both ideas originate from the
transfer of angular momentum from conduction electrons to localised spins in
ferromagnets, either to push data encoded in DWs along nanowires or to sustain
magnetic oscillations in artificial neurones. Even though both concepts share a
common ground, they live on very different time scales which rendered them
incompatible so far. Here, we bridge both ideas by demonstrating the excitation
of magnetic auto-oscillations inside nano-scale DWs using pure spin currents
The non-Abelian gauge theory of matrix big bangs
We study at the classical and quantum mechanical level the time-dependent
Yang-Mills theory that one obtains via the generalisation of discrete
light-cone quantisation to singular homogeneous plane waves. The non-Abelian
nature of this theory is known to be important for physics near the
singularity, at least as far as the number of degrees of freedom is concerned.
We will show that the quartic interaction is always subleading as one
approaches the singularity and that close enough to t=0 the evolution is driven
by the diverging tachyonic mass term. The evolution towards asymptotically flat
space-time also reveals some surprising features.Comment: 29 pages, 8 eps figures, v2: minor changes, references added: v3
small typographical changes
Indexing and efficient instance-based retrieval of process models using untanglings
Process-Aware Information Systems (PAISs) support executions of operational processes that involve people, resources, and software applications on the basis of process models. Process models describe vast, often infinite, amounts of process instances, i.e., workflows supported by the systems. With the increasing adoption of PAISs, large process model repositories emerged in companies and public organizations. These repositories constitute significant information resources. Accurate and efficient retrieval of process models and/or process instances from such repositories is interesting for multiple reasons, e.g., searching for similar models/instances, filtering, reuse, standardization, process compliance checking, verification of formal properties, etc. This paper proposes a technique for indexing process models that relies on their alternative representations, called untanglings. We show the use of untanglings for retrieval of process models based on process instances that they specify via a solution to the total executability problem. Experiments with industrial process models testify that the proposed retrieval approach is up to three orders of magnitude faster than the state of the art
A General Definition of "Conserved Quantities" in General Relativity and Other Theories of Gravity
In general relativity, the notion of mass and other conserved quantities at
spatial infinity can be defined in a natural way via the Hamiltonian framework:
Each conserved quantity is associated with an asymptotic symmetry and the value
of the conserved quantity is defined to be the value of the Hamiltonian which
generates the canonical transformation on phase space corresponding to this
symmetry. However, such an approach cannot be employed to define `conserved
quantities' in a situation where symplectic current can be radiated away (such
as occurs at null infinity in general relativity) because there does not, in
general, exist a Hamiltonian which generates the given asymptotic symmetry.
(This fact is closely related to the fact that the desired `conserved
quantities' are not, in general, conserved!) In this paper we give a
prescription for defining `conserved quantities' by proposing a modification of
the equation that must be satisfied by a Hamiltonian. Our prescription is a
very general one, and is applicable to a very general class of asymptotic
conditions in arbitrary diffeomorphism covariant theories of gravity derivable
from a Lagrangian, although we have not investigated existence and uniqueness
issues in the most general contexts. In the case of general relativity with the
standard asymptotic conditions at null infinity, our prescription agrees with
the one proposed by Dray and Streubel from entirely different considerations.Comment: 39 pages, no figure
- …
