1,790 research outputs found

    Vulnerability analysis of satellite-based synchronized smart grids monitoring systems

    Get PDF
    The large-scale deployment of wide-area monitoring systems could play a strategic role in supporting the evolution of traditional power systems toward smarter and self-healing grids. The correct operation of these synchronized monitoring systems requires a common and accurate timing reference usually provided by a satellite-based global positioning system. Although these satellites signals provide timing accuracy that easily exceeds the needs of the power industry, they are extremely vulnerable to radio frequency interference. Consequently, a comprehensive analysis aimed at identifying their potential vulnerabilities is of paramount importance for correct and safe wide-area monitoring system operation. Armed with such a vision, this article presents and discusses the results of an experimental analysis aimed at characterizing the vulnerability of global positioning system based wide-area monitoring systems to external interferences. The article outlines the potential strategies that could be adopted to protect global positioning system receivers from external cyber-attacks and proposes decentralized defense strategies based on self-organizing sensor networks aimed at assuring correct time synchronization in the presence of external attacks

    Atmospheric mixing ratios of methyl ethyl ketone (2-butanone) in tropical, boreal, temperate and marine environments

    Get PDF
    Methyl ethyl ketone (MEK) enters the atmosphere following direct emission from vegetation and anthropogenic activities, as well as being produced by the gas-phase oxidation of volatile organic compounds (VOCs) such as n-butane. This study presents the first overview of ambient MEK measurements at six different locations, characteristic of forested, urban and marine environments. In order to understand better the occurrence and behaviour of MEK in the atmosphere, we analyse diel cycles of MEK mixing ratios, vertical profiles, ecosystem flux data, and HYSPLIT back trajectories, and compare with co-measured VOCs. MEK measurements were primarily conducted with proton-transfer-reaction mass spectrometer (PTR-MS) instruments. Results from the sites under biogenic influence demonstrate that vegetation is an important source of MEK. The diel cycle of MEK follows that of ambient temperature and the forest structure plays an important role in air mixing. At such sites, a high correlation of MEK with acetone was observed (e.g. r2 = 0.96 for the SMEAR Estonia site in a remote hemiboreal forest in Tartumaa, Estonia, and r2 = 0.89 at the ATTO pristine tropical rainforest site in central Amazonia). Under polluted conditions, we observed strongly enhanced MEK mixing ratios. Overall, the MEK mixing ratios and flux data presented here indicate that both biogenic and anthropogenic sources contribute to its occurrence in the global atmosphere

    Hybrid active focusing with adaptive dispersion for higher defect sensitivity in guided wave inspection of cylindrical structures

    Get PDF
    This is an Accepted Manuscript of an article published by Taylor & Francis in Nondestructive Testing and Evaluation on 23/11/2015, available online: https://www.tandfonline.com/doi/full/10.1080/10589759.2015.1093628.Ultrasonic guided wave inspection is widely used for scanning prismatic structures such as pipes for metal loss. Recent research has investigated focusing the sound energy into predetermined regions of a pipe in order to enhance the defect sensitivity. This paper presents an active focusing technique which is based on a combination of numerical simulation and time reversal concept. The proposed technique is empirically validated using a 3D laser vibrometry measurement of the focal spot. The defect sensitivity of the proposed technique is compared with conventional active focusing, time reversal focusing and synthetic focusing through an empirically validated finite element parametric study. Based on the results, the proposed technique achieves approximately 10 dB improvement of signal-to-coherent-noise ratio compared to the conventional active focusing and time reversal focusing. It is also demonstrated that the proposed technique to have an amplitude gain of around 5 dB over synthetic focusing for defects <0.5λs. The proposed technique is shown to have the potential to improve the reliably detectable flaw size in guided wave inspection from 9% to less than 1% cross-sectional area loss.TWI Ltd and the Center for Electronic System Research (CESR) of Brunel University

    Social assistance performance in Central and Eastern Europe: A pre-transfer post-transfer comparison

    Get PDF
    The anti-poverty impact of national social assistance programmes in eight Central and Eastern European countries is examined using data from the European Union-Survey of Income and Living Conditions (EU-SILC). Results indicate that social assistance programmes achieve only limited poverty reduction, while spending a significant amount of their resources on the non-poor. The more extensive and generous programmes achieve higher effectiveness in reducing poverty. Efficiency on the other hand appears to be linked only to programme size and not to benefit levels. Unlike Western Europe, no trade-off between effectiveness and efficiency could be detected

    Hybrid active focusing with adaptive dispersion for higher defect sensitivity in guided wave inspection of cylindrical structures

    Get PDF
    This is an Accepted Manuscript of an article published by Taylor & Francis in Nondestructive Testing and Evaluation on 23/11/2015, available online: https://www.tandfonline.com/doi/full/10.1080/10589759.2015.1093628.Ultrasonic guided wave inspection is widely used for scanning prismatic structures such as pipes for metal loss. Recent research has investigated focusing the sound energy into predetermined regions of a pipe in order to enhance the defect sensitivity. This paper presents an active focusing technique which is based on a combination of numerical simulation and time reversal concept. The proposed technique is empirically validated using a 3D laser vibrometry measurement of the focal spot. The defect sensitivity of the proposed technique is compared with conventional active focusing, time reversal focusing and synthetic focusing through an empirically validated finite element parametric study. Based on the results, the proposed technique achieves approximately 10 dB improvement of signal-to-coherent-noise ratio compared to the conventional active focusing and time reversal focusing. It is also demonstrated that the proposed technique to have an amplitude gain of around 5 dB over synthetic focusing for defects <0.5λs. The proposed technique is shown to have the potential to improve the reliably detectable flaw size in guided wave inspection from 9% to less than 1% cross-sectional area loss.TWI Ltd and the Center for Electronic System Research (CESR) of Brunel University

    Transcriptional regulation of the urokinase receptor (u-PAR) - A central molecule of invasion and metastasis

    Get PDF
    The phenomenon of tumor-associated proteolysis has been acknowledged as a decisive step in the progression of cancer. This short review focuses on the urokinase receptor (u-PAR), a central molecule involved in tumor-associated invasion and metastasis, and summarizes the transcriptional regulation of u-PAR. The urokinase receptor (u-PAR) is a heavily glycosylated cell surface protein and binds the serine protease urokinase specifically and with high affinity. It consists of three similar cysteine-rich repeats and is anchored to the cell membrane via a GPI-anchor. The u-PAR gene comprises 7 exons and is located on chromosome 19q13. Transcriptional activation of the u-PAR promoter region can be induced by binding of transcription factors (Sp1, AP-1, AP-2, NF-kappaB). One current study gives an example for transcriptional downregulation of u-PAR through a PEA3/ets transcriptional silencing element. Knowledge of the molecular regulation of this molecule in tumor cells could be very important for diagnosis and therapy in the near future

    The Liquid Argon Jet Trigger of the H1 Experiment at HERA

    No full text
    We report on a novel trigger for the liquid argon calorimeter which was installed in the H1 Experiment at HERA.This trigger, called the “Jet Trigger”, was running at level 1 and implemented a real-time cluster algorithm. Within only 800 ns, the Jet Trigger algorithm found local energy maxima in the calorimeter, summed their immediate neighbors, sorted the resulting jets by energy, and applied topological conditions for the final level 1 trigger decision. The Jet Trigger was in operation from the year 2006 until the end of the HERA running in the summer of 2007. With the Jet Trigger it was possible to substantially reduce the thresholds for triggering on electronsand jets, giving access to a largely extended phase space for physical observables which could not have been reached in H1 before. The concepts of the Jet Trigger may be an interesting upgrade option for the LHC experiments

    Performance of the LHCb vertex locator

    Get PDF
    The Vertex Locator (VELO) is a silicon microstrip detector that surrounds the proton-proton interaction region in the LHCb experiment. The performance of the detector during the first years of its physics operation is reviewed. The system is operated in vacuum, uses a bi-phase CO2 cooling system, and the sensors are moved to 7 mm from the LHC beam for physics data taking. The performance and stability of these characteristic features of the detector are described, and details of the material budget are given. The calibration of the timing and the data processing algorithms that are implemented in FPGAs are described. The system performance is fully characterised. The sensors have a signal to noise ratio of approximately 20 and a best hit resolution of 4 μm is achieved at the optimal track angle. The typical detector occupancy for minimum bias events in standard operating conditions in 2011 is around 0.5%, and the detector has less than 1% of faulty strips. The proximity of the detector to the beam means that the inner regions of the n+-on-n sensors have undergone space-charge sign inversion due to radiation damage. The VELO performance parameters that drive the experiment's physics sensitivity are also given. The track finding efficiency of the VELO is typically above 98% and the modules have been aligned to a precision of 1 μm for translations in the plane transverse to the beam. A primary vertex resolution of 13 μm in the transverse plane and 71 μm along the beam axis is achieved for vertices with 25 tracks. An impact parameter resolution of less than 35 μm is achieved for particles with transverse momentum greater than 1 GeV/c
    corecore