1,006 research outputs found
Hysteresis and competition between disorder and crystallization in sheared and vibrated granular flow
Experiments on spherical particles in a 3D Couette cell vibrated from below
and sheared from above show a hysteretic freezing/melting transition. Under
sufficient vibration a crystallized state is observed, which can be melted by
sufficient shear. The critical line for this transition coincides with equal
kinetic energies for vibration and shear. The force distribution is
double-peaked in the crystalline state and single-peaked with an approximately
exponential tail in the disordered state. A linear relation between pressure
and volume () exists for a continuum of partially and/or
intermittently melted states over a range of parameters
Protocol dependence of the jamming transition
We propose a theoretical framework for predicting the protocol dependence of
the jamming transition for frictionless spherical particles that interact via
purely repulsive contact forces. We study isostatic jammed disk packings
obtained via two protocols: isotropic compression and simple shear. We show
that for frictionless systems, all jammed packings can be obtained via either
protocol. However, the probability to obtain a particular jammed packing
depends on the packing-generation protocol. We predict the average shear strain
required to induce jamming in initially unjammed packings from the measured
probability to jam at packing fraction from isotropic compression. We
compare our predictions to results from numerical simulations of jamming and
find quantitative agreement. We also show that the packing fraction range, over
which strain-induced jamming occurs, tends to zero in the large system limit
for frictionless packings with overdamped dynamics.Comment: 8 pages, 7 figure
Finite-size behaviour of the microcanonical specific heat
For models which exhibit a continuous phase transition in the thermodynamic
limit a numerical study of small systems reveals a non-monotonic behaviour of
the microcanonical specific heat as a function of the system size. This is in
contrast to a treatment in the canonical ensemble where the maximum of the
specific heat increases monotonically with the size of the system. A
phenomenological theory is developed which permits to describe this peculiar
behaviour of the microcanonical specific heat and allows in principle the
determination of microcanonical critical exponents.Comment: 15 pages, 7 figures, submitted to J. Phys.
Pattern Formation in the Inhomogeneous Cooling State of Granular Fluids
We present results from comprehensive event-driven (ED) simulations of
nonlinear pattern formation in freely-evolving granular gases. In particular,
we focus on the the morphologies of density and velocity fields in the
inhomogeneous cooling state (ICS). We emphasize the strong analogy between the
ICS morphologies and pattern formation in phase ordering systems with a
globally conserved order parameter.Comment: 11 pages, 4 figures. to appear in Europhys. Let
The Jamming Transition in Granular Systems
Recent simulations have predicted that near jamming for collections of
spherical particles, there will be a discontinuous increase in the mean contact
number, Z, at a critical volume fraction, phi_c. Above phi_c, Z and the
pressure, P are predicted to increase as power laws in phi-phi_c. In
experiments using photoelastic disks we corroborate a rapid increase in Z at
phi_c and power-law behavior above phi_c for Z and P. Specifically we find
power-law increase as a function of phi-phi_c for Z-Z_c with an exponent beta
around 0.5, and for P with an exponent psi around 1.1. These exponents are in
good agreement with simulations. We also find reasonable agreement with a
recent mean-field theory for frictionless particles.Comment: 4 pages, 4 figures, 2 pages supplement; minor changes and
clarifications, 2 addtl. refs., accepted for publication in Phys. Rev. Let
Influence of correlations on molecular recognition
The influence of the patchiness and correlations in the distribution of
hydrophobic and polar residues at the interface between two rigid biomolecules
on their recognition ability is investigated in idealised coarse-grained
lattice models. A general two-stage approach is utilised where an ensemble of
probe molecules is designed first and the recognition ability of the probe
ensemble is related to the free energy of association with both the target
molecule and a different rival molecule in a second step. The influence of
correlation effects are investigated using numerical Monte Carlo techniques and
mean field methods. Correlations lead to different optimum characteristic
lengths of the hydrophobic and polar patches for the mutual design of the two
biomolecules on the one hand and their recognition ability in the presence of
other molecules on the other hand.Comment: 15 pages, 5 figure
Granular Materials and the Risks They Pose for Success on the Moon and Mars
Working with soil, sand, powders, ores, cement and sintered bricks, excavating, grading construction sites, driving off-road, transporting granules in chutes and pipes, sifting gravel, separating solids from gases, and using hoppers are so routine that it seems straightforward to do it on the Moon and Mars as we do it on Earth. This paper brings to the fore how little these processes are understood and the millennia-long trial-and-error practices that lead to today's massive over-design, high failure rate, and extensive incremental scaling up of industrial processes because of the inadequate predictive tools for design. We present a number of pragmatic scenarios where granular materials play a role, the risks involved, and what understanding is needed to greatly reduce the risks
Testing the effect of medical positive reinforcement training on salivary cortisol levels in bonobos and orangutans
The management of captive animals has been improved by the establishment of positive reinforcement training as a tool to facilitate interactions between caretakers and animals. In great apes, positive reinforcement training has also been used to train individuals to participate in simple medical procedures to monitor physical health. One aim of positive reinforcement training is to establish a relaxed atmosphere for situations that, without training, might be very stressful. This is especially true for simple medical procedures that can require animals to engage in behaviours that are unusual or use unfamiliar medical devices that can be upsetting. Therefore, one cannot exclude the possibility that the training itself is a source of stress. In this study, we explored the effects of medical positive reinforcement training on salivary cortisol in two groups of captive ape species, orangutans and bonobos, which were familiar to this procedure. Furthermore, we successfully biologically validated the salivary cortisol assay, which had already been validated for bonobos, for orangutans. For the biological validation, we found that cortisol levels in orangutan saliva collected during baseline conditions were lower than in samples collected during three periods that were potentially stressful for the animals. However, we did not find significant changes in salivary cortisol during medical positive reinforcement training for either bonobos or orangutans. Therefore, for bonobos and orangutans with previous exposure to medical PRT, the procedure is not stressful. Thus, medical PRT provides a helpful tool for the captive management of the two species
Frozen capillary waves on glass surfaces: an AFM study
Using atomic force microscopy on silica and float glass surfaces, we give
evidence that the roughness of melted glass surfaces can be quantitatively
accounted for by frozen capillary waves. In this framework the height spatial
correlations are shown to obey a logarithmic scaling law; the identification of
this behaviour allows to estimate the ratio where is the
Boltzmann constant, the interface tension and the temperature
corresponding to the ``freezing'' of the capillary waves. Variations of
interface tension and (to a lesser extent) temperatures of annealing treatments
are shown to be directly measurable from a statistical analysis of the
roughness spectrum of the glass surfaces
- …
