458 research outputs found
Breakup of the Fermi surface near the Mott transition in low-dimensional systems
We investigate the Mott transition in weakly-coupled one-dimensional (1d)
fermionic chains. Using a generalization of Dynamic Mean Field Theory, we show
that the Mott gap is suppressed at some critical hopping . The
transition from the 1d insulator to a 2d metal proceeds through an intermediate
phase where the Fermi surface is broken into electron and hole pockets. The
quasiparticle spectral weight is strongly anisotropic along the Fermi surface,
both in the intermediate and metallic phases. We argue that such pockets would
look like `arcs' in photoemission experiments.Comment: REVTeX 4, 5 pages, 4 EPS figures. References added; problem with
figure 4 fixed; typos correcte
Hall effect in strongly correlated low dimensional systems
We investigate the Hall effect in a quasi one-dimensional system made of
weakly coupled Luttinger Liquids at half filling. Using a memory function
approach, we compute the Hall coefficient as a function of temperature and
frequency in the presence of umklapp scattering. We find a power-law correction
to the free-fermion value (band value), with an exponent depending on the
Luttinger parameter . At high enough temperature or frequency the
Hall coefficient approaches the band value.Comment: 7 pages, 3 figure
A two-dimensional Fermi liquid with attractive interactions
We realize and study an attractively interacting two-dimensional Fermi
liquid. Using momentum resolved photoemission spectroscopy, we measure the
self-energy, determine the contact parameter of the short-range interaction
potential, and find their dependence on the interaction strength. We
successfully compare the measurements to a theoretical analysis, properly
taking into account the finite temperature, harmonic trap, and the averaging
over several two-dimensional gases with different peak densities
Schottky barrier heights at polar metal/semiconductor interfaces
Using a first-principle pseudopotential approach, we have investigated the
Schottky barrier heights of abrupt Al/Ge, Al/GaAs, Al/AlAs, and Al/ZnSe (100)
junctions, and their dependence on the semiconductor chemical composition and
surface termination. A model based on linear-response theory is developed,
which provides a simple, yet accurate description of the barrier-height
variations with the chemical composition of the semiconductor. The larger
barrier values found for the anion- than for the cation-terminated surfaces are
explained in terms of the screened charge of the polar semiconductor surface
and its image charge at the metal surface. Atomic scale computations show how
the classical image charge concept, valid for charges placed at large distances
from the metal, extends to distances shorter than the decay length of the
metal-induced-gap states.Comment: REVTeX 4, 11 pages, 6 EPS figure
Prospective assessment of CYP2D6 by genotyping, phenotyping and measurement of tamoxifen, PD 05-09 4-hydroxy-tamoxifen and endoxifen in breast cancer patients treated with tamoxifen.
Tamoxifen (tam) is a widely used endocrine therapy in the treatment of early and advanced stage breast cancer in women and men. It is a pro-drug having weak affinity with the estrogen receptor and needs to be converted to its main metabolite, endoxifen (endox), to have full anticancer activity.
Cytochrome 2D6 (CYP2D6) plays a major role in the metabolism of tamoxifen to endoxifen. It is genetically highly polymorphic and its activity influences profoundly the synthesis of endoxifen and potentially the efficacy of tamoxifen treatment.
Genotyping is currently the most widely used approach in studies and also in clinical practice to categorize patients as poor- (PM), intermediate- (IM), extensive- (EM) and ultra rapid-metabolizers (UM). Some clinicians already use genotyping in order to tailor the endocrine therapy of their patients.
Owing to the large inter-individual variations in concentrations of the active moitey due to genetic and non-genetic influences renders the predictive value of the test uncertain for an individual patient. A significant number of patients classified as EM or IM by genotyping have indeed relatively low endoxifen levels similar to PMs1. This suggests that genotyping is probably not the opti ma l meth o d f or predi cti ng end oxif en l evels
Imaging the essential role of spin-fluctuations in high-Tc superconductivity
We have used scanning tunneling spectroscopy to investigate short-length
electronic correlations in three-layer Bi2Sr2Ca2Cu3O(10+d) (Bi-2223). We show
that the superconducting gap and the energy Omega_dip, defined as the
difference between the dip minimum and the gap, are both modulated in space
following the lattice superstructure, and are locally anti-correlated. Based on
fits of our data to a microscopic strong-coupling model we show that Omega_dip
is an accurate measure of the collective mode energy in Bi-2223. We conclude
that the collective mode responsible for the dip is a local excitation with a
doping dependent energy, and is most likely the (pi,pi) spin resonance.Comment: 4 pages, 4 figure
Collapse of the Mott gap and emergence of a nodal liquid in lightly doped SrIrO
Superconductivity in underdoped cuprates emerges from an unusual electronic
state characterised by nodal quasiparticles and an antinodal pseudogap. The
relation between this state and superconductivity is intensely studied but
remains controversial. The discrimination between competing theoretical models
is hindered by a lack of electronic structure data from related doped Mott
insulators. Here we report the doping evolution of the Heisenberg
antiferromagnet SrIrO, a close analogue to underdoped cuprates. We
demonstrate that metallicity emerges from a rapid collapse of the Mott gap with
doping, resulting in lens-like Fermi contours rather than disconnected Fermi
arcs as observed in cuprates. Intriguingly though, the emerging electron liquid
shows nodal quasiparticles with an antinodal pseudogap and thus bares strong
similarities with underdoped cuprates. We conclude that anisotropic pseudogaps
are a generic property of two-dimensional doped Mott insulators rather than a
unique hallmark of cuprate high-temperature superconductivity
QED3 theory of pairing pseudogap in cuprates: From d-wave superconductor to antiferromagnet via "algebraic" Fermi liquid
High- cuprates differ from conventional superconductors in three crucial
aspects: the superconducting state descends from a strongly correlated
Mott-Hubbard insulator, the order parameter exhibits d-wave symmetry and
superconducting fluctuations play an all important role. We formulate a theory
of the pseudogap state in the cuprates by taking the advantage of these unusual
features. The effective low energy theory within the pseudogap phase is shown
to be equivalent to the (anisotropic) quantum electrodynamics in (2+1)
space-time dimensions (QED). The role of Dirac fermions is played by the
nodal BdG quasiparticles while the massless gauge field arises through
unbinding of quantum vortex-antivortex degrees of freedom. A detailed
derivation of this QED theory is given and some of its main physical
consequences are inferred for the pseudogap state. We focus on the properties
of symmetric QED and propose that inside the pairing protectorate it
assumes the role reminiscent of that played by the Fermi liquid theory in
conventional metals.Comment: 31 pages, 4 figures; replaced with revised versio
The Density of States in High-Tc Superconductors Vortices
We calculated the electronic structure of a vortex in a pseudogapped
superconductor within a model featuring strong correlations. With increasing
strength of the correlations, the BCS core states are suppressed and the
spectra in and outside the core become similar. If the correlations are
short-range, we find new core states in agreement with the observations in
YBaCuO and BiSrCaCuO. Our results point to a common phenomenology for these two
systems and indicate that normal-state correlations survive below Tc without
taking part in the overall phase coherence.Comment: REVTeX 4, 5 pages, 2 EPS figures. Some changes to the text; new
figures; references update
The price of tumor control: an analysis of rare side effects of anti-CTLA-4 therapy in metastatic melanoma from the ipilimumab network
Background: Ipilimumab, a cytotoxic T-lymphocyte antigen-4 (CTLA-4) blocking antibody, has been approved for the treatment of metastatic melanoma and induces adverse events (AE) in up to 64% of patients. Treatment algorithms for the management of common ipilimumab-induced AEs have lead to a reduction of morbidity, e.g. due to bowel perforations. However, the spectrum of less common AEs is expanding as ipilimumab is increasingly applied. Stringent recognition and management of AEs will reduce drug-induced morbidity and costs, and thus, positively impact the cost-benefit ratio of the drug. To facilitate timely identification and adequate management data on rare AEs were analyzed at 19 skin cancer centers.
Methods and Findings: Patient files (n = 752) were screened for rare ipilimumab-associated AEs. A total of 120 AEs, some of which were life-threatening or even fatal, were reported and summarized by organ system describing the most instructive cases in detail. Previously unreported AEs like drug rash with eosinophilia and systemic symptoms (DRESS), granulomatous inflammation of the central nervous system, and aseptic meningitis, were documented. Obstacles included patientś delay in reporting symptoms and the differentiation of steroid-induced from ipilimumab-induced AEs under steroid treatment. Importantly, response rate was high in this patient population with tumor regression in 30.9% and a tumor control rate of 61.8% in stage IV melanoma patients despite the fact that some patients received only two of four recommended ipilimumab infusions. This suggests that ipilimumab-induced antitumor responses can have an early onset and that severe autoimmune reactions may reflect overtreatment.
Conclusion: The wide spectrum of ipilimumab-induced AEs demands doctor and patient awareness to reduce morbidity and treatment costs and true ipilimumab success is dictated by both objective tumor responses and controlling severe side effects
- …
