12,246 research outputs found
Finite size scaling in Ising-like systems with quenched random fields: Evidence of hyperscaling violation
In systems belonging to the universality class of the random field Ising
model, the standard hyperscaling relation between critical exponents does not
hold, but is replaced by a modified hyperscaling relation. As a result,
standard formulations of finite size scaling near critical points break down.
In this work, the consequences of modified hyperscaling are analyzed in detail.
The most striking outcome is that the free energy cost \Delta F of interface
formation at the critical point is no longer a universal constant, but instead
increases as a power law with system size, \Delta F proportional to ,
with the violation of hyperscaling critical exponent, and L the linear
extension of the system. This modified behavior facilitates a number of new
numerical approaches that can be used to locate critical points in random field
systems from finite size simulation data. We test and confirm the new
approaches on two random field systems in three dimensions, namely the random
field Ising model, and the demixing transition in the Widom-Rowlinson fluid
with quenched obstacles
Depletion induced isotropic-isotropic phase separation in suspensions of rod-like colloids
When non-adsorbing polymers are added to an isotropic suspension of rod-like
colloids, the colloids effectively attract each other via depletion forces. We
performed Monte Carlo simulations to study the phase diagram of such
rod-polymer mixture. The colloidal rods were modelled as hard spherocylinders;
the polymers were described as spheres of the same diameter as the rods. The
polymers may overlap with no energy cost, while overlap of polymers and rods is
forbidden.
Large amounts of depletant cause phase separation of the mixture. We
estimated the phase boundaries of isotropic-isotropic coexistence both, in the
bulk and in confinement. To determine the phase boundaries we applied the grand
canonical ensemble using successive umbrella sampling [J. Chem. Phys. 120,
10925 (2004)], and we performed a finite-size scaling analysis to estimate the
location of the critical point. The results are compared with predictions of
the free volume theory developed by Lekkerkerker and Stroobants [Nuovo Cimento
D 16, 949 (1994)]. We also give estimates for the interfacial tension between
the coexisting isotropic phases and analyse its power-law behaviour on approach
of the critical point
Sequelae of early trauma from a neurobiological perspective
Childhood trauma is one of the most well-established risk factors for the development of mental disorders. Due to the availability of new technologies, we are now beginning to understand how early trauma gets under the skin and exerts a sustained influence on various domains of psychological functioning and health. In the present review we will first briefly summarize what is currently known about the neurobiological effects of childhood trauma. We will then consider genetic and epigenetic factors as possible mechanisms mediating the biological embedding of childhood trauma.Der Zusammenhang zwischen frühen Traumatisierungen in der Kindheit und einem erhöhten psychischen Erkrankungsrisiko ist in der Fachliteratur seit Langem gut belegt. Erst in den letzten Jahren beginnen wir aufgrund technologischer Fortschritte zu verstehen, wie frühe Traumatisierungen körperlich niedergeschrieben werden und sich so ein Leben lang auf verschiedene Aspekte unseres Verhaltens und Erlebens auswirken können. In der vorliegenden Übersicht wird zunächst der aktuelle Erkenntnisstand zu den neurobiologischen Auswirkungen von Kindheitstraumata kurz zusammengefasst. Danach werden genetische und epigenetische Faktoren als mögliche Mechanismen der biologischen Einbettung betrachtet
Chaotic transients in the switching of roto-breathers
By integrating a set of model equations for Josephson ladder subjected to a
uniform transverse bias current we have found almost all of the kinds of
breathers described in recent experiments, and closely reproduced their
voltage-current characteristics and switching behaviour. Our main result is
that a chaotic transient occurs in the switching process. The growth of tiny
perturbations during the chaotic transient causes the new breather
configuration to be extremely sensitive to the precise history of the initial
breather and can also cause the new breather to have a new centre of symmetry.Comment: 6 pages, 4 figure
Spin transport in magnetic multilayers
We study by extensive Monte Carlo simulations the transport of itinerant
spins travelling inside a multilayer composed of three ferromagnetic films
antiferromagnetically coupled to each other in a sandwich structure. The two
exterior films interact with the middle one through non magnetic spacers. The
spin model is the Ising one and the in-plane transport is considered. Various
interactions are taken into account. We show that the current of the itinerant
spins going through this system depends strongly on the magnetic ordering of
the multilayer: at temperatures below (above) the transition temperature
, a strong (weak) current is observed. This results in a strong jump of
the resistance across . Moreover, we observe an anomalous variation,
namely a peak, of the spin current in the critical region just above . We
show that this peak is due to the formation of domains in the temperature
region between the low- ordered phase and the true paramagnetic disordered
phase. The existence of such domains is known in the theory of critical
phenomena. The behavior of the resistance obtained here is compared to a recent
experiment. An excellent agreement with our physical interpretation is
observed. We also show and discuss effects of various physical parameters
entering our model such as interaction range, strength of electric and magnetic
fields and magnetic film and non magnetic spacer thicknesses.Comment: 8 pages, 17 figures, submitted to J. Phys.: Cond Matte
Critical behavior of colloid-polymer mixtures in random porous media
We show that the critical behavior of a colloid-polymer mixture inside a
random porous matrix of quenched hard spheres belongs to the universality class
of the random-field Ising model. We also demonstrate that random-field effects
in colloid-polymer mixtures are surprisingly strong. This makes these systems
attractive candidates to study random-field behavior experimentally.Comment: 4 pages, 3 figures, to appear in Phys. Rev. Let
Monte Carlo Simulation of Long Chain Polymer Melts: Crossover from Rouse to Reptation Dynamics
We present data of Monte Carlo simulations for monodisperse linear polymer
chains in dense melts with degrees of polymerization between N=16 and N=512.
The aim of this study is to investigate the crossover from Rouse-like dynamics
for short chains to reptation-like dynamics for long chains. To address this
problem we calculate a variety of different quantities: standard mean-square
displacements of inner monomers and of the chain's center of mass, the recently
proposed cubic invariant, persistence of bond-vector orientation with time, and
the auto-correlation functions of the bond vector, the end-to-end vector and
the Rouse modes. This analysis reveals that the crossover from non- to
entangled dynamics is very protracted. Only the largest chain length N=512,
which is about 13 times larger than the entanglement length, shows evidence for
reptation.Comment: 38 pages of REVTeX, 14 PostScript figure
Pion-less effective field theory for atomic nuclei and lattice nuclei
We compute the medium-mass nuclei O and Ca using pionless
effective field theory (EFT) at next-to-leading order (NLO). The low-energy
coefficients of the EFT Hamiltonian are adjusted to experimantal data for
nuclei with mass numbers and , or alternatively to results from
lattice quantum chromodynamics (QCD) at an unphysical pion mass of 806 MeV. The
EFT is implemented through a discrete variable representation in the harmonic
oscillator basis. This approach ensures rapid convergence with respect to the
size of the model space and facilitates the computation of medium-mass nuclei.
At NLO the nuclei O and Ca are bound with respect to decay into
alpha particles. Binding energies per nucleon are 9-10 MeV and 30-40 MeV at
pion masses of 140 MeV and 806 MeV, respectively.Comment: 26 page
Snapshot Observation for 2D Classical Lattice Models by Corner Transfer Matrix Renormalization Group
We report a way of obtaining a spin configuration snapshot, which is one of
the representative spin configurations in canonical ensemble, in a finite area
of infinite size two-dimensional (2D) classical lattice models. The corner
transfer matrix renormalization group (CTMRG), a variant of the density matrix
renormalization group (DMRG), is used for the numerical calculation. The matrix
product structure of the variational state in CTMRG makes it possible to
stochastically fix spins each by each according to the conditional probability
with respect to its environment.Comment: 4 pages, 8figure
- …
