281 research outputs found
Characterizing Potentials by a Generalized Boltzmann Factor
Based on the concept of a nonequilibrium steady state, we present a novel
method to experimentally determine energy landscapes acting on colloidal
systems. By measuring the stationary probability distribution and the current
in the system, we explore potential landscapes with barriers up to several
hundred \kT. As an illustration, we use this approach to measure the
effective diffusion coefficient of a colloidal particle moving in a tilted
potential
The Einstein relation generalized to non-equilibrium
The Einstein relation connecting the diffusion constant and the mobility is
violated beyond the linear response regime. For a colloidal particle driven
along a periodic potential imposed by laser traps, we test the recent
theoretical generalization of the Einstein relation to the non-equilibrium
regime which involves an integral over measurable velocity correlation
functions
Thermodynamics of a Colloidal Particle in a Time-Dependent Non-Harmonic Potential
We study the motion of an overdamped colloidal particle in a time-dependent
non-harmonic potential. We demonstrate the first law-like balance between
applied work, exchanged heat, and internal energy on the level of a single
trajectory. The observed distribution of applied work is distinctly
non-Gaussian in good agreement with numerical calculations. Both the Jarzynski
relation and a detailed fluctuation theorem are verified with good accuracy
Finite sampling effects on generalized fluctuation-dissipation relations for steady states
We study the effects of the finite number of experimental data on the
computation of a generalized fluctuation-dissipation relation around a
nonequilibrium steady state of a Brownian particle in a toroidal optical trap.
We show that the finite sampling has two different effects, which can give rise
to a poor estimate of the linear response function. The first concerns the
accessibility of the generalized fluctuation-dissipation relation due to the
finite number of actual perturbations imposed to the control parameter. The
second concerns the propagation of the error made at the initial sampling of
the external perturbation of the system. This can be highly enhanced by
introducing an estimator which corrects the error of the initial sampled
condition. When these two effects are taken into account in the data analysis,
the generalized fluctuation-dissipation relation is verified experimentally
Nonequilibrium Linear Response for Markov Dynamics, II: Inertial Dynamics
We continue our study of the linear response of a nonequilibrium system. This
Part II concentrates on models of open and driven inertial dynamics but the
structure and the interpretation of the result remain unchanged: the response
can be expressed as a sum of two temporal correlations in the unperturbed
system, one entropic, the other frenetic. The decomposition arises from the
(anti)symmetry under time-reversal on the level of the nonequilibrium action.
The response formula involves a statistical averaging over explicitly known
observables but, in contrast with the equilibrium situation, they depend on the
model dynamics in terms of an excess in dynamical activity. As an example, the
Einstein relation between mobility and diffusion constant is modified by a
correlation term between the position and the momentum of the particle
Entropy production for mechanically or chemically driven biomolecules
Entropy production along a single stochastic trajectory of a biomolecule is
discussed for two different sources of non-equilibrium. For a molecule
manipulated mechanically by an AFM or an optical tweezer, entropy production
(or annihilation) occurs in the molecular conformation proper or in the
surrounding medium. Within a Langevin dynamics, a unique identification of
these two contributions is possible. The total entropy change obeys an integral
fluctuation theorem and a class of further exact relations, which we prove for
arbitrarily coupled slow degrees of freedom including hydrodynamic
interactions. These theoretical results can therefore also be applied to driven
colloidal systems. For transitions between different internal conformations of
a biomolecule involving unbalanced chemical reactions, we provide a
thermodynamically consistent formulation and identify again the two sources of
entropy production, which obey similar exact relations. We clarify the
particular role degenerate states have in such a description
Single-molecule experiments in biological physics: methods and applications
I review single-molecule experiments (SME) in biological physics. Recent
technological developments have provided the tools to design and build
scientific instruments of high enough sensitivity and precision to manipulate
and visualize individual molecules and measure microscopic forces. Using SME it
is possible to: manipulate molecules one at a time and measure distributions
describing molecular properties; characterize the kinetics of biomolecular
reactions and; detect molecular intermediates. SME provide the additional
information about thermodynamics and kinetics of biomolecular processes. This
complements information obtained in traditional bulk assays. In SME it is also
possible to measure small energies and detect large Brownian deviations in
biomolecular reactions, thereby offering new methods and systems to scrutinize
the basic foundations of statistical mechanics. This review is written at a
very introductory level emphasizing the importance of SME to scientists
interested in knowing the common playground of ideas and the interdisciplinary
topics accessible by these techniques. The review discusses SME from an
experimental perspective, first exposing the most common experimental
methodologies and later presenting various molecular systems where such
techniques have been applied. I briefly discuss experimental techniques such as
atomic-force microscopy (AFM), laser optical tweezers (LOT), magnetic tweezers
(MT), biomembrane force probe (BFP) and single-molecule fluorescence (SMF). I
then present several applications of SME to the study of nucleic acids (DNA,
RNA and DNA condensation), proteins (protein-protein interactions, protein
folding and molecular motors). Finally, I discuss applications of SME to the
study of the nonequilibrium thermodynamics of small systems and the
experimental verification of fluctuation theorems. I conclude with a discussion
of open questions and future perspectives.Comment: Latex, 60 pages, 12 figures, Topical Review for J. Phys. C (Cond.
Matt
On Replacement Strategies in Steady State Evolutionary Algorithms
Steady State models of Evolutionary Algorithms are widely used, yet surprisingly little attention has been paid to the effects arising from different replacement strategies. This paper explores the use of mathematical models to characterise the selection pressures arising in a selection-only environment. The first part brings together models for the behaviour of seven different replacement mechanisms and provides expressions for various proposed indicators of Evolutionary Algorithm behaviour. Some of these have been derived elsewhere, and are included for completeness, but the majority are new to this paper. These theoretical indicators are used to compare the behaviour of the different strategies. The second part of this paper examines the practical relevance of these indicators as predictors for algorithms' relative performance in terms of optimisation time and reliability. It is not the intention of this paper to come up with a "one size fits all" recommendation for choice of replacement strategy. Although some strategies may have little to recommend them, the relative ranking of others is shown to depend on the intended use of the algorithm to be implemented, as reflected in the choice of performance metrics. © 2007 by the Massachusetts Institute of Technology
The Clinical Variability of Maternally Inherited Diabetes and Deafness Is Associated with the Degree of Heteroplasmy in Blood Leukocytes
Context: Maternally inherited diabetes and deafness (MIDD) is a rare form of diabetes with a matrilineal transmission, sensorineural hearing loss, and macular pattern dystrophy due to an A to G transition at position 3243 of mitochondrial DNA (mtDNA) (m.3243A>G). The phenotypic heterogeneity of MIDD may be the consequence of different levels of mutated mtDNA among mitochondria in a given tissue.
Objective: The aim of the present study was thus to ascertain the correlation between the severity of the phenotype in patients with MIDD and the level of heteroplasmy in the blood leukocytes.
Participants: The GEDIAM prospective multicenter register was initiated in 1995. Eighty-nine Europid patients from this register, with MIDD and the mtDNA 3243A>G mutation, were included. Patients with MELAS (mitochondrial encephalomyopathy, lactic acidosis, and stroke-like episodes) or with mitochondrial diabetes related to other mutations or to deletions of mtDNA were excluded.
Results: A significant negative correlation was found between levels of heteroplasmy and age of the patients at the time of sampling for molecular analysis, age at the diagnosis of diabetes, and body mass index. After adjustment for age at sampling for molecular study and gender, the correlation between heteroplasmy levels and age at the diagnosis of diabetes was no more significant. The two other correlations remained significant. A significant positive correlation between levels of heteroplasmy and HbA1c was also found and remained significant after adjustment for age at molecular sampling and gender.
Conclusions: These results support the hypothesis that heteroplasmy levels are at least one of the determinants of the severity of the phenotype in MIDD.
Heteroplasmy levels are at least one of the determinants of the severity of the phenotype of maternally inherited diabetes and deafness
- …
