6,836 research outputs found
Lensing and the Centers of Distant Early-Type Galaxies
Gravitational lensing provides a unique probe of the inner 10-1000 pc of
distant galaxies (z=0.2-1). Lens theory predicts that every strong lens system
should have a faint image near the center of the lens galaxy, which should be
visible in radio lenses but have not been observed. We study these ``core''
images using models derived from the stellar distributions in nearby early-type
galaxies. We find that realistic galaxies predict a remarkably wide range of
core images, with lensing magnifications spanning some six orders of magnitude.
More concentrated galaxies produce fainter core images, although not with any
simple, quantitative, model independent relation. Some real galaxies have
diffuse cores and predict bright core images (magnification mu>~0.1), but more
common are galaxies that predict faint core images (mu<~0.001). Thus, stellar
mass distributions alone are probably concentrated enough to explain the lack
of observed core images, and may require observational sensitivity to improve
by an order of magnitude before detections of core images become common.
Two-image lenses will tend to have brighter core images than four-image lenses,
so they will be the better targets for finding core images and exploiting these
tools for studying the central mass distributions of distant galaxies.Comment: 13 pages, emulateapj; submitted to Ap
The gas phase cyclization of deprotonated N-aryl-2-cyano-2-diazoacetamides
The document attached has been archived with permission from the publisher.1-Aryl-4-cyano-5-hydroxy-1,2,3-triazoles can be obtained in solution by base-catalysed cyclization of N-aryl-2-cyano-2-diazoacetamides. A similar reaction was shown to take place under conditions of negative ion chemical ionization in the ion source of a mass spectrometer. High resolution mass spectrometry, tandem mass spectrometry, charge reversal spectra, synthesis of the ions with known structures and quantum chemical calculations were used to prove the latter statement. The fact of the observed cyclization demonstrates once again the ability of mass spectrometry to study the gas phase chemical reactions that take place in solution.Vladislav V. Lobodin, Yuriy Yu. Morzherin, Tom Blumenthal, Daniel Bilusich, Vladimir V. Ovcharenko, John H. Bowie, and Albert T. Lebede
Chloride channels in stellate cells are essential for uniquely high secretion rates in neuropeptide-stimulated Drosophila diuresis
Epithelia frequently segregate transport processes to specific cell types, presumably for improved efficiency and control. The molecular players underlying this functional specialization are of particular interest. In Drosophila, the renal (Malpighian) tubule displays the highest per-cell transport rates known and has two main secretory cell types, principal and stellate. Electrogenic cation transport is known to reside in the principal cells, whereas stellate cells control the anion conductance, but by an as-yet-undefined route. Here, we resolve this issue by showing that a plasma membrane chloride channel, encoded by ClC-a, is exclusively expressed in the stellate cell and is required for Drosophila kinin-mediated induction of diuresis and chloride shunt conductance, evidenced by chloride ion movement through the stellate cells, leading to depolarization of the transepithelial potential. By contrast, ClC-a knockdown had no impact on resting secretion levels. Knockdown of a second CLC gene showing highly abundant expression in adult Malpighian tubules, ClC-c, did not impact depolarization of transepithelial potential after kinin stimulation. Therefore, the diuretic action of kinin in Drosophila can be explained by an increase in ClC-a–mediated chloride conductance, over and above a resting fluid transport level that relies on other (ClC-a–independent) mechanisms or routes. This key segregation of cation and anion transport could explain the extraordinary fluid transport rates displayed by some epithelia
Single-parameter non-adiabatic quantized charge pumping
Controlled charge pumping in an AlGaAs/GaAs gated nanowire by
single-parameter modulation is studied experimentally and theoretically.
Transfer of integral multiples of the elementary charge per modulation cycle is
clearly demonstrated. A simple theoretical model shows that such a quantized
current can be generated via loading and unloading of a dynamic quasi-bound
state. It demonstrates that non-adiabatic blockade of unwanted tunnel events
can obliterate the requirement of having at least two phase-shifted periodic
signals to realize quantized pumping. The simple configuration without multiple
pumping signals might find wide application in metrological experiments and
quantum electronics.Comment: 4 pages, 4 figure
The AO Pediatric Comprehensive Classification of Long Bone Fractures (PCCF).
Background and purpose - The AO Pediatric Comprehensive Classification of Long Bone Fractures (PCCF) describes the localization and morphology of fractures, and considers severity in 2 categories: (1) simple, and (2) multifragmentary. We evaluated simple and multifragmentary fractures in a large consecutive cohort of children diagnosed with long bone fractures in Switzerland. Patients and methods - Children and adolescents treated for fractures between 2009 and 2011 at 2 tertiary pediatric surgery hospitals were retrospectively included. Fractures were classified according to the AO PCCF. Severity classes were described according to fracture location, patient age and sex, BMI, and cause of trauma. Results - Of all trauma events, 3% (84 of 2,730) were diagnosed with a multifragmentary fracture. This proportion was age-related: 2% of multifragmentary fractures occurred in school-children and 7% occurred in adolescents. In patients diagnosed with a single fracture only, the highest percentage of multifragmentation occurred in the femur (12%, 15 of 123). In fractured paired radius/ulna bones, multifragmentation occurred in 2% (11 of 687); in fractured paired tibia/fibula bones, it occurred in 21% (24 of 115), particularly in schoolchildren (5 of 18) and adolescents (16 of 40). In a multivariable regression model, age, cause of injury, and bone were found to be relevant prognostic factors of multifragmentation (odds ratio (OR) > 2). Interpretation - Overall, multifragmentation in long bone fractures in children was rare and was mostly observed in adolescents. The femur was mostly affected in single fractures and the lower leg was mostly affected in paired-bone fractures. The clinical relevance of multifragmentation regarding growth and long-term functional recovery remains to be determined
On the harmonic measure of stable processes
Using three hypergeometric identities, we evaluate the harmonic measure of a
finite interval and of its complementary for a strictly stable real L{\'e}vy
process. This gives a simple and unified proof of several results in the
literature, old and recent. We also provide a full description of the
corresponding Green functions. As a by-product, we compute the hitting
probabilities of points and describe the non-negative harmonic functions for
the stable process killed outside a finite interval
Topologically massive magnetic monopoles
We show that in the Maxwell-Chern-Simons theory of topologically massive
electrodynamics the Dirac string of a monopole becomes a cone in anti-de Sitter
space with the opening angle of the cone determined by the topological mass
which in turn is related to the square root of the cosmological constant. This
proves to be an example of a physical system, {\it a priory} completely
unrelated to gravity, which nevertheless requires curved spacetime for its very
existence. We extend this result to topologically massive gravity coupled to
topologically massive electrodynamics in the framework of the theory of Deser,
Jackiw and Templeton. These are homogeneous spaces with conical deficit. Pure
Einstein gravity coupled to Maxwell-Chern-Simons field does not admit such a
monopole solution
Properties of Classical and Quantum Jensen-Shannon Divergence
Jensen-Shannon divergence (JD) is a symmetrized and smoothed version of the
most important divergence measure of information theory, Kullback divergence.
As opposed to Kullback divergence it determines in a very direct way a metric;
indeed, it is the square of a metric. We consider a family of divergence
measures (JD_alpha for alpha>0), the Jensen divergences of order alpha, which
generalize JD as JD_1=JD. Using a result of Schoenberg, we prove that JD_alpha
is the square of a metric for alpha lies in the interval (0,2], and that the
resulting metric space of probability distributions can be isometrically
embedded in a real Hilbert space. Quantum Jensen-Shannon divergence (QJD) is a
symmetrized and smoothed version of quantum relative entropy and can be
extended to a family of quantum Jensen divergences of order alpha (QJD_alpha).
We strengthen results by Lamberti et al. by proving that for qubits and pure
states, QJD_alpha^1/2 is a metric space which can be isometrically embedded in
a real Hilbert space when alpha lies in the interval (0,2]. In analogy with
Burbea and Rao's generalization of JD, we also define general QJD by
associating a Jensen-type quantity to any weighted family of states.
Appropriate interpretations of quantities introduced are discussed and bounds
are derived in terms of the total variation and trace distance.Comment: 13 pages, LaTeX, expanded contents, added references and corrected
typo
The AO Pediatric Comprehensive Classification of Long Bone Fractures (PCCF).
Background and purpose - To achieve a common understanding when dealing with long bone fractures in children, the AO Pediatric Comprehensive Classification of Long Bone Fractures (AO PCCF) was introduced in 2007. As part of its final validation, we present the most relevant fracture patterns in the upper extremities of a representative population of children classified according to the PCCF. Patients and methods - We included children and adolescents (0-17 years old) diagnosed with 1 or more long bone fractures between January 2009 and December 2011 at the university hospitals in Bern and Lausanne (Switzerland). Patient charts were retrospectively reviewed and fractures were classified from standard radiographs. Results - Of 2,292 upper extremity fractures in 2,203 children and adolescents, 26% involved the humerus and 74% involved the forearm. In the humerus, 61%, and in the forearm, 80% of single distal fractures involved the metaphysis. In adolescents, single humerus fractures were more often epiphyseal and diaphyseal fractures, and among adolescents radius fractures were more often epiphyseal fractures than in other age groups. 47% of combined forearm fractures were distal metaphyseal fractures. Only 0.7% of fractures could not be classified within 1 of the child-specific fracture patterns. Of the single epiphyseal fractures, 49% were Salter-Harris type-II (SH II) fractures; of these, 94% occurred in schoolchildren and adolescents. Of the metaphyseal fractures, 58% showed an incomplete fracture pattern. 89% of incomplete fractures affected the distal radius. Of the diaphyseal fractures, 32% were greenstick fractures. 24 Monteggia fractures occurred in pre-school children and schoolchildren, and 2 occurred in adolescents. Interpretation - The pattern of pediatric fractures in the upper extremity can be comprehensively described according to the PCCF. Prospective clinical studies are needed to determine its clinical relevance for treatment decisions and prognostication of outcome
- …
