266 research outputs found
All roads lead to Rome: the many ways to pluripotency
Cell pluripotency, spatial restriction, and development are spatially and temporally controlled by epigenetic regulatory mechanisms that occur without any permanent loss or alteration of genetic material, but rather through modifications "on top of it." These changes modulate the accessibility to transcription factors, either allowing or repressing their activity, thus shaping cell phenotype. Several studies have demonstrated the possibility to interact with these processes, reactivating silenced genes and inducing a high plasticity state, via an active demethylating effect, driven by ten-eleven translocation (TET) enzymes and an overall decrease of global methylation. In agreement with this, TET activities have been shown to be indispensable for mesenchymal to epithelial transition of somatic cells into iPSCs and for small molecule-driven epigenetic erasure. Beside the epigenetic mechanisms, growing evidences highlight the importance of mechanical forces in supporting cell pluripotency, which is strongly influenced by 3D rearrangement and mechanical properties of the surrounding microenvironment, through the activation of specific mechanosensing-related pathways. In this review, we discuss and provide an overview of small molecule ability to modulate cell plasticity and define cell fate through the activation of direct demethylating effects. In addition, we describe the contribution of the Hippo signaling mechanotransduction pathway as one of the mechanisms involved in the maintenance of pluripotency during embryo development and its induction in somatic cells
State-of-the-art in reproductive bench science: Hurdles and new technological solutions
Infertility is a growing issue in modern society, being the fifth highest serious global disability according to the World Health Organization. To study infertility and other reproductive system complications, bench science still relies on 2D and animal studies, which regularly have been criticized due to their inability to mimic the human body. Particular challenges in 2D studies include the inability to mimic fluid dynamics, gametes modulation and their crosstalk, hormonal patterns as well as the low quality and viability of gametes and embryos. Animal models also present other drawbacks, namely the absence of menstruation, making it difficult to establish a reliable predictive model for the human system. Additionally, reproductive studies should not be limited to the fallopian tube as the sole responsible for most infertility cases, but instead the research spectrum should be widened to the whole reproductive system given the tight interconnectivity between each and every organ. In the last few decades, new in vitro technologies have been developed and applied to the study of reproductive system complications. These systems allow to create complex three-dimensional structures, which are therefore able to more closely resemble specific microenvironments and provide more realistic physical and biochemical cues. 3D (bio)printing, organoids and organs-on-chips are some of the dynamic technologies which are replacing conventionally employed static 2D culture. Herein, we provide an overview of the challenges found in conventional 2D and animal models of the reproductive system and present potential technological solutions for those same challenges
Is Virtual Reality a Game Changer in Pediatrics' Acute Pain Perception?
Purpose of review: Virtual reality (VR) is a promising tool that is becoming increasingly popular for the prevention and treatment of procedural pain in children. This review aims to investigate the current literature on the use and effectiveness of VR in paediatric procedural pain management, focusing on needle-related procedures, burn wound care, dental procedures among others; limitations and future perspectives on the use of VR will also be highlighted.
Recent findings: in addition to the most researched fields of application (e.g. needle procedures), VR has also started to be used in new areas, such as nasal and gastrointestinal endoscopies as well as minor surgeries. From the latest evidence, VR seems to be effective in many procedures, especially compared to no distraction; however, there is conflicting data in the literature due to numerous factors such as differences between technologies, degree of VR-immersion, patients coping styles among others.
Summary: there are still no data of absolute certainty on the effectiveness of VR in reducing procedural pain in paediatric patients and data pooling is still difficult. Future research should carry on large randomised-controlled, multicentre studies to better define VR properties and how best to optimise VR software and user experience for maximum pain reduction
Bridging the gap between cell culture and live tissue
Traditional in vitro two-dimensional (2-D) culture systems only partly imitate the physiological and biochemical features of cells in their original tissue. In vivo, in organs and tissues, cells are surrounded by a three-dimensional (3-D) organization of supporting matrix and neighbouring cells, and a gradient of chemical and mechanical signals. Furthermore, the presence of blood flow and mechanical movement provides a dynamic environment (Jong et al., 2011). In contrast, traditional in vitro culture, carried out on 2-D plastic or glass substrates, typically provides a static environment, which, however is the base of the present understanding of many biological processes, tissue homeostasis as well as disease.
It is clear that this is not an exact representation of what is happening in vivo and the microenvironment provided by in vitro cell culture models are significantly different and can cause deviations in cell response and behaviour from those distinctive of in vivo tissues.
In order to translate the present basic knowledge in cell control, cell repair and regeneration from the laboratory bench to the clinical application, we need a better understanding of the cell and tissue interactions. This implies a detailed comprehension of the natural tissue environment, with its organization and local signals, in order to more closely mimic what happens in vivo, developing more physiological models for efficient in vitro systems. In particular, it is imperative to understand the role of the environmental cues which can be mainly divided into those of a chemical and mechanical nature
A Detailed Study of Rainbow Trout (Onchorhynchus mykiss) Intestine Revealed That Digestive and Absorptive Functions Are Not Linearly Distributed along Its Length
To increase the sustainability of trout farming,the industry requires alternatives to \ufb01sh-based meals that do not compromise animal health and growth performances. To develop new feeds, detailed knowledge of intestinal morphology and physiology is required. We performed histological, histochemical, immunohistochemical and morphometric analysis at typical time points of in vivo feeding trials (50, 150 and 500 g). Only minor changes occurred during growth whereas di\ufb00erences characterized two compartments, not linearly distributed along the intestine. The \ufb01rst included the pyloric caeca, the basal part of the complex folds and the villi of the distal intestine. This was characterized by a signi\ufb01cantly smaller number of goblet cells with smaller mucus vacuoles, higher proliferation and higher apoptotic rate but a smaller extension of fully di\ufb00erentiated epithelial cells and by the presence of numerous pinocytotic vacuolization. The second compartment was formed by the proximal intestine and the apical part of the posterior intestine complex folds. Here we observed more abundant goblet cells with bigger vacuoles, low proliferation rate, few round apoptotic cells, a more extended area of fully di\ufb00erentiated cells and no pinocytotic vacuoles. Our results suggest that rainbow trout intestine is physiologically arranged to mingle digestive and absorptive functions along its lengt
Sperm fertilizing ability in vitro influences bovine blastocyst miRNA content
MicroRNAs (miRNAs) are small highly conserved non-coding RNA molecules that orchestrate a wide range of biological processes through post-transcriptional regulation of gene expression. During development, miRNAs play a key role in driving embryo patterning and morphogenesis in a specific and stage-dependent manner. Here, we investigated whether sperm from bulls with different fertilizing ability in vitro influence blastocyst quality and miRNA content. Results demonstrate that blastocysts obtained using sperm from high fertility sires (H group) display significantly greater cleavage and blastocyst development as well as greater transcript abundance in blastocysts for the developmental competence markers CDX2, KRT8, NANOG, OCT4, PLAC8, PTGS2, SOX17, and SOX2, compared to blastocysts generated using sperm from low fertility sires (L group). In parallel, high throughput deep sequencing and differential expression studies revealed that H blastocysts exhibit a greater miRNA content compared to L blastocysts, with hsa-miR-4755–5p and hsa-miR-548d-3p uniquely detected in the H group, and greater abundance of hsa-miR-1225–3p in the H group. Gene ontology (GO) and KEGG pathway analyses indicated that the 3 differentially expressed miRNAs identified are involved in the regulation of many biological mechanisms with a key role in aspects of early embryo development, including transcriptional regulation, cellular biosynthesis, nucleic acid metabolism, cellular differentiation, apoptosis, cytoskeleton remodeling, cell-to-cell interactions, and endocytosis. Overall, our results indicate that sperm fertilizing ability influences blastocyst developmental ability and miRNA content. In addition, we demonstrate an association between blastocyst quality and miRNA content, thus suggesting the possibility to score miRNA expression as biomarkers for improved routine embryo selection technologies to support assisted reproductive efforts
Implications of miRNA expression pattern in bovine oocytes and follicular fluids for developmental competence
Developmental competence determines the oocyte capacity to support initial embryo growth, but the molecular mechanisms underlying this phenomenon are still ill-defined. Changes in microRNA (miRNA) expression pattern have been described during follicular growth in several species. Therefore, aim of this study was to investigate whether miRNA expression pattern in cow oocyte and follicular fluid (FF) is associated with the acquisition of developmental competence. Samples were collected from ovaries with more than, or fewer than, 10 mid-antral follicles (H- and L-ovaries) because previous studies demonstrated that this parameter is a reliable predictor of oocyte competence. After miRNA deep sequencing and bioinformatic data analysis, we identified 58 miRNAs in FF and 6 in the oocyte that were differentially expressed between H- and L-ovaries. Overall, our results indicate that miRNA levels both in FF and in the ooplasm must remain within specific thresholds and that changes in either direction compromising oocyte competence. Some of the miRNAs found in FF (miR-769, miR-1343, miR-450a, miR-204, miR-1271 and miR-451) where already known to regulate follicle growth and their expression pattern indicate that they are also involved in the acquisition of developmental competence. Some miRNAs were differentially expressed in both compartments but with opposite patterns, suggesting that miRNAs do not flow freely between FF and oocyte. Gene Ontology analysis showed that the predicted gene targets of most differentially expressed miRNAs are part of a few signalling pathways. Regulation of maternal mRNA storage and mitochondrial activity seem to be the processes more functionally relevant in determining oocyte quality. In conclusion, our data identified a few miRNAs in the follicular fluid and in the ooplasm that modulate the oocyte developmental competence. This provides new insights that could help with the management of cattle reproductive efficiency
Mountain high and valley deep: epigenetic controls of pluripotency and cell fate
All the somatic cells composing a mammalian organism are genetically identical and contain the same DNA sequence. Nevertheless, they are able to adopt a distinct commitment, differentiate in a tissue specific way and respond to developmental cues, acquiring a terminal phenotype. At the end of the differentiation process, each cell is highly specialized and committed to a distinct determined fate. This is possible thanks to tissue-specific gene expression, timely regulated by epigenetic modifications, that gradually limit cell potency to a more restricted phenotype-related expression pattern. Complex chemical modifications of DNA, RNA and associated proteins, that determine activation or silencing of certain genes are responsible for the 'epigenetic control' that triggers the restriction of cell pluripotency, with the acquisition of the phenotypic definition and the preservation of its stability during subsequent cell divisions. The process is however reversible and may be modified by biochemical and biological manipulation, leading to the reactivation of hypermethylated pluripotency genes and inducing cells to transit from a terminally committed state to a higher plasticity one. These epigenetic regulatory mechanisms play a key role in embryonic development since they drive phenotype definition and tissue differentiation. At the same time, they are crucial for a better understanding of pluripotency regulation and restriction, stem cell biology and tissue repair process
in search of the transcriptional blueprints of a competent oocyte
The oocyte undergoes a remarkably long and elaborated journey within the follicle before becoming fully equipped to sustain embryonic development. Its ability to support early embryonic development relies largely on the maternal transcripts accumulated during its growth and maturation. However, it is still not clear what transcriptome blueprint composes a competent oocyte. A number of extensive studies provided a detailed characterization of the mRNA molecules that are gradually accumulated in the oocyte cytoplasm. The detail of our knowledge has gradually increased through the years also thanks to the development and improvement of the analytical techniques. From realtime PCR analysis of single transcripts, to the whole transcriptome approach of gene arrays and new genereation sequencing, scientists accumulated an exponentially growing amount of new information. More recently, the discovery of non-coding RNAs revealed a new layer of complexity in the mechanisms that modulate gene expression at the mRNA level, in folliculogenesis and oogenesis. In particular, data are emerging on the potential role of microRNAs in controlling ovarian function, oocyte maturation and the oocyte-somatic cell cross talk. This review will try to summarize the vast amount of data currently available on the mRNAs and microRNAs associated with the ovarian function and to find their biological significance
- …
