12,647 research outputs found

    How good must single photon sources and detectors be for efficient linear optical quantum computation?

    Get PDF
    We present a scheme for linear optical quantum computation (LOQC) which is highly robust to imperfect single photon sources and inefficient detectors. In particular we show that if the product of the detector efficiency with the source efficiency is greater than 2/3, then efficient LOQC is possible. This threshold is many orders of magnitude more relaxed than those which could be inferred by application of standard results in fault tolerance. The result is achieved within the cluster state paradigm for quantum computation.Comment: New version contains an Added Appendi

    Technology transfer - A selected bibliography

    Get PDF
    Selected bibliography on technology transfe

    The Serendiptichord: Reflections on the collaborative design process between artist and researcher

    Get PDF
    The Serendiptichord is a wearable instrument, resulting from a collaboration crossing fashion, technology, music and dance. This paper reflects on the collaborative process and how defining both creative and research roles for each party led to a successful creative partnership built on mutual respect and open communication. After a brief snapshot of the instrument in performance, the instrument is considered within the context of dance-driven interactive music systems followed by a discussion on the nature of the collaboration and its impact upon the design process and final piece

    Bound States for Magic State Distillation in Fault-Tolerant Quantum Computation

    Get PDF
    Magic state distillation is an important primitive in fault-tolerant quantum computation. The magic states are pure non-stabilizer states which can be distilled from certain mixed non-stabilizer states via Clifford group operations alone. Because of the Gottesman-Knill theorem, mixtures of Pauli eigenstates are not expected to be magic state distillable, but it has been an open question whether all mixed states outside this set may be distilled. In this Letter we show that, when resources are finitely limited, non-distillable states exist outside the stabilizer octahedron. In analogy with the bound entangled states, which arise in entanglement theory, we call such states bound states for magic state distillation.Comment: Published version. This paper builds on a theorem proven in "On the Structure of Protocols for Magic State Distillation", arXiv:0908.0838. These two papers jointly form the content of a talk entitled "Neither Magical nor Classical?", which was presented at TQC 2009, Waterlo

    Loss tolerant linear optical quantum memory by measurement-based quantum computing

    Get PDF
    We give a scheme for loss tolerantly building a linear optical quantum memory which itself is tolerant to qubit loss. We use the encoding recently introduced in Varnava et al 2006 Phys. Rev. Lett. 97 120501, and give a method for efficiently achieving this. The entire approach resides within the 'one-way' model for quantum computing (Raussendorf and Briegel 2001 Phys. Rev. Lett. 86 5188–91; Raussendorf et al 2003 Phys. Rev. A 68 022312). Our results suggest that it is possible to build a loss tolerant quantum memory, such that if the requirement is to keep the data stored over arbitrarily long times then this is possible with only polynomially increasing resources and logarithmically increasing individual photon life-times

    Qudit Colour Codes and Gauge Colour Codes in All Spatial Dimensions

    Get PDF
    Two-level quantum systems, qubits, are not the only basis for quantum computation. Advantages exist in using qudits, d-level quantum systems, as the basic carrier of quantum information. We show that color codes, a class of topological quantum codes with remarkable transversality properties, can be generalized to the qudit paradigm. In recent developments it was found that in three spatial dimensions a qubit color code can support a transversal non-Clifford gate, and that in higher spatial dimensions additional non-Clifford gates can be found, saturating Bravyi and K\"onig's bound [Phys. Rev. Lett. 110, 170503 (2013)]. Furthermore, by using gauge fixing techniques, an effective set of Clifford gates can be achieved, removing the need for state distillation. We show that the qudit color code can support the qudit analogues of these gates, and show that in higher spatial dimensions a color code can support a phase gate from higher levels of the Clifford hierarchy which can be proven to saturate Bravyi and K\"onig's bound in all but a finite number of special cases. The methodology used is a generalisation of Bravyi and Haah's method of triorthogonal matrices [Phys. Rev. A 86 052329 (2012)], which may be of independent interest. For completeness, we show explicitly that the qudit color codes generalize to gauge color codes, and share the many of the favorable properties of their qubit counterparts.Comment: Authors' final cop

    Communications satellite systems capacity analysis

    Get PDF
    Analog and digital modulation techniques are compared with regard to efficient use of the geostationary orbit by communications satellites. Included is the definition of the baseline systems (both space and ground segments), determination of interference susceptibility, calculation of orbit spacing, and evaluation of relative costs. It is assumed that voice or TV is communicated at 14/11 GHz using either FM or QPSK modulation. Both the Fixed-Satellite Service and the Broadcasting-Satellite Service are considered. For most of the cases examined the digital approach requires a satellite spacing less than or equal to that required by the analog approach
    corecore