1,127 research outputs found

    Complexity of Left-Ideal, Suffix-Closed and Suffix-Free Regular Languages

    Get PDF
    A language LL over an alphabet Σ\Sigma is suffix-convex if, for any words x,y,zΣx,y,z\in\Sigma^*, whenever zz and xyzxyz are in LL, then so is yzyz. Suffix-convex languages include three special cases: left-ideal, suffix-closed, and suffix-free languages. We examine complexity properties of these three special classes of suffix-convex regular languages. In particular, we study the quotient/state complexity of boolean operations, product (concatenation), star, and reversal on these languages, as well as the size of their syntactic semigroups, and the quotient complexity of their atoms.Comment: 20 pages, 11 figures, 1 table. arXiv admin note: text overlap with arXiv:1605.0669

    Linear Parsing Expression Grammars

    Full text link
    PEGs were formalized by Ford in 2004, and have several pragmatic operators (such as ordered choice and unlimited lookahead) for better expressing modern programming language syntax. Since these operators are not explicitly defined in the classic formal language theory, it is significant and still challenging to argue PEGs' expressiveness in the context of formal language theory.Since PEGs are relatively new, there are several unsolved problems.One of the problems is revealing a subclass of PEGs that is equivalent to DFAs. This allows application of some techniques from the theory of regular grammar to PEGs. In this paper, we define Linear PEGs (LPEGs), a subclass of PEGs that is equivalent to DFAs. Surprisingly, LPEGs are formalized by only excluding some patterns of recursive nonterminal in PEGs, and include the full set of ordered choice, unlimited lookahead, and greedy repetition, which are characteristic of PEGs. Although the conversion judgement of parsing expressions into DFAs is undecidable in general, the formalism of LPEGs allows for a syntactical judgement of parsing expressions.Comment: Parsing expression grammars, Boolean finite automata, Packrat parsin

    Stability and Complexity of Minimising Probabilistic Automata

    Full text link
    We consider the state-minimisation problem for weighted and probabilistic automata. We provide a numerically stable polynomial-time minimisation algorithm for weighted automata, with guaranteed bounds on the numerical error when run with floating-point arithmetic. Our algorithm can also be used for "lossy" minimisation with bounded error. We show an application in image compression. In the second part of the paper we study the complexity of the minimisation problem for probabilistic automata. We prove that the problem is NP-hard and in PSPACE, improving a recent EXPTIME-result.Comment: This is the full version of an ICALP'14 pape

    Going higher in the First-order Quantifier Alternation Hierarchy on Words

    Full text link
    We investigate the quantifier alternation hierarchy in first-order logic on finite words. Levels in this hierarchy are defined by counting the number of quantifier alternations in formulas. We prove that one can decide membership of a regular language to the levels BΣ2\mathcal{B}\Sigma_2 (boolean combination of formulas having only 1 alternation) and Σ3\Sigma_3 (formulas having only 2 alternations beginning with an existential block). Our proof works by considering a deeper problem, called separation, which, once solved for lower levels, allows us to solve membership for higher levels

    Completeness and Incompleteness of Synchronous Kleene Algebra

    Get PDF
    Synchronous Kleene algebra (SKA), an extension of Kleene algebra (KA), was proposed by Prisacariu as a tool for reasoning about programs that may execute synchronously, i.e., in lock-step. We provide a countermodel witnessing that the axioms of SKA are incomplete w.r.t. its language semantics, by exploiting a lack of interaction between the synchronous product operator and the Kleene star. We then propose an alternative set of axioms for SKA, based on Salomaa's axiomatisation of regular languages, and show that these provide a sound and complete characterisation w.r.t. the original language semantics.Comment: Accepted at MPC 201

    On the State Complexity of Partial Derivative Automata For Regular Expressions with Intersection

    Get PDF
    Extended regular expressions (with complement and intersection) are used in many applications due to their succinctness. In particular, regular expressions extended with intersection only (also called semi-extended) can already be exponentially smaller than standard regular expressions or equivalent nondeterministic finite automata (NFA). For practical purposes it is important to study the average behaviour of conversions between these models. In this paper, we focus on the conversion of regular expressions with intersection to nondeterministic finite automata, using partial derivatives and the notion of support. First, we give a tight upper bound of 2O(n) for the worst-case number of states of the resulting partial derivative automaton, where n is the size of the expression. Using the framework of analytic combinatorics, we then establish an upper bound of (1.056 + o(1))n for its asymptotic average-state complexity, which is significantly smaller than the one for the worst case. (c) IFIP International Federation for Information Processing 2016

    Opto-mechanical measurement of micro-trap via nonlinear cavity enhanced Raman scattering spectrum

    Full text link
    High-gain resonant nonlinear Raman scattering on trapped cold atoms within a high-fineness ring optical cavity is simply explained under a nonlinear opto-mechanical mechanism, and a proposal using it to detect frequency of micro-trap on atom chip is presented. The enhancement of scattering spectrum is due to a coherent Raman conversion between two different cavity modes mediated by collective vibrations of atoms through nonlinear opto-mechanical couplings. The physical conditions of this technique are roughly estimated on Rubidium atoms, and a simple quantum analysis as well as a multi-body semiclassical simulation on this nonlinear Raman process is conducted.Comment: 7 pages, 2 figure

    Why are we not flooded by involuntary thoughts about the past and future? Testing the cognitive inhibition dependency hypothesis

    Get PDF
    © The Author(s) 2018In everyday life, involuntary thoughts about future plans and events occur as often as involuntary thoughts about the past. However, compared to involuntary autobiographical memories (IAMs), such episodic involuntary future thoughts (IFTs) have become a focus of study only recently. The aim of the present investigation was to examine why we are not constantly flooded by IFTs and IAMs given that they are often triggered by incidental cues while performing undemanding activities. One possibility is that activated thoughts are suppressed by the inhibitory control mechanism, and therefore depleting inhibitory control should enhance the frequency of both IFTs and IAMs. We report an experiment with a between-subjects design, in which participants in the depleted inhibition condition performed a 60-min high-conflict Stroop task before completing a laboratory vigilance task measuring the frequency of IFTs and IAMs. Participants in the intact inhibition condition performed a version of the Stroop task that did not deplete inhibitory control. To control for physical and mental fatigue resulting from performing the 60-min Stroop tasks in experimental conditions, participants in the control condition completed only the vigilance task. Contrary to predictions, the number of IFTs and IAMs reported during the vigilance task, using the probe-caught method, did not differ across conditions. However, manipulation checks showed that participants’ inhibitory resources were reduced in the depleted inhibition condition, and participants were more tired in the experimental than in the control conditions. These initial findings suggest that neither inhibitory control nor physical and mental fatigue affect the frequency of IFTs and IAMs.Peer reviewedFinal Published versio

    Probabilistic Reachability for Parametric Markov Models

    Get PDF
    Abstract. Given a parametric Markov model, we consider the problem of computing the formula expressing the probability of reaching a given set of states. To attack this principal problem, Daws has suggested to first convert the Markov chain into a finite automaton, from which a regular expression is computed. Afterwards, this expression is evaluated to a closed form expression representing the reachability probability. This paper investigates how this idea can be turned into an effective procedure. It turns out that the bottleneck lies in an exponential growth of the regular expression relative to the number of states. We therefore proceed differently, by tightly intertwining the regular expression computation with its evaluation. This allows us to arrive at an effective method that avoids the exponential blow up in most practical cases. We give a detailed account of the approach, also extending to parametric models with rewards and with non-determinism. Experimental evidence is provided, illustrating that our implementation provides meaningful insights on non-trivial models.
    corecore