1,517 research outputs found
Anomalous temperature dependence of the single-particle spectrum in the organic conductor TTF-TCNQ
The angle-resolved photoemission spectrum of the organic conductor TTF-TCNQ
exhibits an unusual transfer of spectral weight over a wide energy range for
temperatures 60K<T<260K. In order to investigate the origin of this finding,
here we report numerical results on the single-particle spectral weight
A(k,omega) for the one-dimensional (1D) Hubbard model and, in addition, for the
1D extended Hubbard and the 1D Hubbard-Holstein models. Comparisons with the
photoemission data suggest that the 1D Hubbard model is not sufficient for
explaining the unusual T dependence, and the long-range part of the Coulomb
repulsion also needs to be included.Comment: 4 pages, 4 figure
d_{x^2-y^2} Symmetry and the Pairing Mechanism
An important question is if the gap in the high temperature cuprates has
d_{x^2-y^2} symmetry, what does that tell us about the underlying interaction
responsible for pairing. Here we explore this by determining how three
different types of electron-phonon interactions affect the d_{x^2-y^2} pairing
found within an RPA treatment of the 2D Hubbard model. These results imply that
interactions which become more positive as the momentum transfer increases
favor d_{x^2-y^2} pairing in a nearly half-filled band.Comment: 9 pages and 2 eps figs, uses revtex with epsf, in press, PR
Temperature dependence of spinon and holon excitations in one-dimensional Mott insulators
Motivated by the recent angle-resolved photoemission spectroscopy (ARPES)
measurements on one-dimensional Mott insulators, SrCuO and
NaVO, we examine the single-particle spectral weight
of the one-dimensional (1D) Hubbard model at half-filling. We are particularly
interested in the temperature dependence of the spinon and holon excitations.
For this reason, we have performed the dynamical density matrix renormalization
group and determinantal quantum Monte Carlo (QMC) calculations for the
single-particle spectral weight of the 1D Hubbard model. In the QMC data, the
spinon and holon branches become observable at temperatures where the
short-range antiferromagnetic correlations develop. At these temperatures, the
spinon branch grows rapidly. In the light of the numerical results, we discuss
the spinon and holon branches observed by the ARPES experiments on
SrCuO. These numerical results are also in agreement with the
temperature dependence of the ARPES results on NaVO.Comment: 8 pages, 8 figure
Effects of spin fluctuations in the t-J model
Recent experiments on the Fermi surface and the electronic structure of the
cuprate-supercondutors showed the importance of short range antiferromagnetic
correlations for the physics in these systems. Theoretically, features like
shadow bands were predicted and calculated mainly for the Hubbard model. In our
approach we calculate an approximate selfenergy of the - model. Solving
the Hubbard model in the Dynamical Mean Field Theory (DMFT) yields a
selfenergy that contains most of the local correlations as a starting point.
Effects of the nearest neighbor spin interaction are then included in a
heuristical manner. Formally like in -perturbation theory all ring diagrams,
with the single bubble assumed to be purely local, are summed to get a
correction to the DMFT-self engergy This procedure causes new bands and can
furnish strong deformation of quasiparticle bands. % Our results are finally
compared with %former approaches to the Hubbard model.Comment: 3 Pages, Latex, 2 Postscript-Figures submitted to Physica
Anomalous magnetic properties near Mott transition in Kagom\'e lattice Hubbard model
We investigate the characteristics of the metallic phase near the Mott
transition in the Kagom\'e lattice Hubbard model using the cellular dynamical
mean field theory. By calculating the specific heat and spin correlation
functions, we demonstrate that the quasiparticles show anomalous properties in
the metallic phase close to the Mott transition. We find clear evidence for the
multi-band heavy quasiparticles in the specific heat, which gives rise to
unusual temperature dependence of the spin correlation functions.Comment: 2 pages, 3 figures, accepted for publication in J. Mag. Mag. Mater.
(Proceedings of the ICM, Kyoto, Japan, August 2006
Charge transfer fluctuation, wave superconductivity, and the Raman phonon in the Cuprates: A detailed analysis
The Raman spectrum of the phonon in the superconducting cuprate
materials is investigated theoretically in detail in both the normal and
superconducting phases, and is contrasted with that of the phonon. A
mechanism involving the charge transfer fluctuation between the two oxygen ions
in the CuO plane coupled to the crystal field perpendicular to the plane is
discussed and the resulting electron-phonon coupling is evaluated. Depending on
the symmetry of the phonon the weight of different parts of the Fermi surface
in the coupling is different. This provides the opportunity to obtain
information on the superconducting gap function at certain parts of the Fermi
surface. The lineshape of the phonon is then analyzed in detail both in the
normal and superconducting states. The Fano lineshape is calculated in the
normal state and the change of the linewidth with temperature below T is
investigated for a pairing symmetry. Excellent agreement is
obtained for the phonon lineshape in YBaCuO. These
experiments, however, can not distinguish between and a
highly anisotropic -wave pairing.Comment: Revtex, 21 pages + 4 postscript figures appended, tp
Neel Order and Electron Spectral Functions in the Two-Dimensional Hubbard Model: a Spin-Charge Rotating Frame Approach
Using recently developed quantum SU(2)xU(1) rotor approach, that provides a
self-consistent treatment of the antiferromagnetic state we have performed
electronic spectral function calculations for the Hubbard model on the square
lattice. The collective variables for charge and spin are isolated in the form
of the space-time fluctuating U(1) phase field and rotating spin quantization
axis governed by the SU(2) symmetry, respectively. As a result interacting
electrons appear as composite objects consisting of bare fermions with attached
U(1) and SU(2) gauge fields. This allows us to write the fermion Green's
function in the space-time domain as the product CP^1 propagator resulting from
the SU(2) gauge fields, U(1) phase propagator and the pseudo-fermion
correlation function. As a result the problem of calculating the spectral line
shapes now becomes one of performing the convolution of spin, charge and
pseudo-fermion Green's functions. The collective spin and charge fluctuations
are governed by the effective actions that are derived from the Hubbard model
for any value of the Coulomb interaction. The emergence of a sharp peak in the
electron spectral function in the antiferromagnetic state indicates the decay
of the electron into separate spin and charge carrying particle excitations.Comment: 16 pages, 5 figures, submitted to Phys. Rev.
Effects of dilute Zn impurities on the uniform magnetic susceptibility of YBa2Cu3O{7-delta}
The effects of dilute Zn impurities on the uniform magnetic susceptibility
are calculated in the normal metallic state for a model of the spin
fluctuations of the layered cuprates. It is shown that scatterings from
extended impurity potentials can lead to a coupling of the q~(pi,pi) and the
q~0 components of the magnetic susceptibility chi(q). Within the presence of
antiferromagnetic correlations, this coupling can enhance the uniform
susceptibility. The implications of this result for the experimental data on Zn
substituted YBa2Cu3O{7-delta} are discussed.Comment: 4 pages, 4 figure
Collective Spin Fluctuation Mode and Raman Scattering in Superconducting Cuprates
Although the low frequency electronic Raman response in the superconducting
state of the cuprates can be largely understood in terms of a d-wave energy
gap, a long standing problem has been an explanation for the spectra observed
in the polarization orientations. We present calculations which
suggest that the peak position of the observed spectra is due to a
collective spin fluctuation mode.Comment: 4 pages, 5 eps figure
Seeds Buffering for Information Spreading Processes
Seeding strategies for influence maximization in social networks have been
studied for more than a decade. They have mainly relied on the activation of
all resources (seeds) simultaneously in the beginning; yet, it has been shown
that sequential seeding strategies are commonly better. This research focuses
on studying sequential seeding with buffering, which is an extension to basic
sequential seeding concept. The proposed method avoids choosing nodes that will
be activated through the natural diffusion process, which is leading to better
use of the budget for activating seed nodes in the social influence process.
This approach was compared with sequential seeding without buffering and single
stage seeding. The results on both real and artificial social networks confirm
that the buffer-based consecutive seeding is a good trade-off between the final
coverage and the time to reach it. It performs significantly better than its
rivals for a fixed budget. The gain is obtained by dynamic rankings and the
ability to detect network areas with nodes that are not yet activated and have
high potential of activating their neighbours.Comment: Jankowski, J., Br\'odka, P., Michalski, R., & Kazienko, P. (2017,
September). Seeds Buffering for Information Spreading Processes. In
International Conference on Social Informatics (pp. 628-641). Springe
- …
