40 research outputs found
Rules of Thumb and Real Option Decision Biases for Optimally Imperfect Decisions
Investment decisions about an uncertain project are a difficult task. A decision maker can use calculation techniques such as net present value or real option. The accuracy of the technique employed can provide a significant modification to the final decision. Each of these techniques makes the assumption that the decision maker acts in a neutral way without any cognitive bias, such as overconfidence in his or her opinion. Much research in behavioural finance show that pessimistic or optimistic feelings of the decision maker can potentially lead to wrong decisions. We explore the relation of some decision biases and the use of evaluation techniques. By employing simulations, we show that the choices of a specific technique can emphasise or reduce decision bias and investment errors
Investor’s behaviour and the relevance of asymmetric risk measures
Numerous articles use the Markowitz mean-variance approach for computing the capital asset pricing model (CAPM) and to determine the best set of assets an investor should hold. But using a symmetric risk measure is not necessarily straightforward in the mind of many investors. Many other approaches to determine a portfolio composition, e.g. faith or other behavioral determinants, appear more natural. Especially an asymmetric downside risk approach is more appealing to many investors. This work investigates the differences between portfolios based on a symmetric and on an asymmetric risk measure. Based on the Behavioral Portfolio Theory (BTP) model by Shefrin and Statman and the Markowitz classical portfolio approach the authors compare portfolios composed by stocks of the French SBR 120 market over a period of 6 years. Simulation of 100,000 virtual portfolios over the study period shows that there are only minor differences between portfolios obtained by downside or symmetric risk. Therefore, the results leave room for taking into consideration other choice criteria to complete the approach, such as the computing power if an investor wants to use much more demanding downside risk methodology or faith bases selection criteria to pick the assets
Écosystèmes et modèles d'affaires
Ce numéro thématique propose une analyse des modèles d'affaires et des écosystèmes d'affaires basée simultanément sur les outils de la science économique et de la science de gestion. Il présente des travaux de recherche qui, à l'appui d'une approche originale couplant les concepts de modèles d'affaires et d'écosystèmes d'affaires, analysent la manière dont un système économique fait face à son environnement concurrentiel via l'innovation. À travers ces travaux, l'objectif de ce numéro est de montrer que la mobilisation jointe des concepts de modèles d'affaires et d'écosystèmes d'affaires facilite l'analyse des nouveaux processus d'innovation comme la compréhension de la manière dont un système économique est organisé, géré ou évolue. Les communautés de chercheurs qui se sont tour à tour intéressés aux modèles d'affaires de l'innovation, à son écosystème, au management des droits de propriété de ses composantes, à ses effets d'apprentissage, etc., se sont pour la plupart intéressées à la manière dont un système économique adapte sa stratégie d'innovation à son environnement concurrentiel. Leurs travaux mobilisent cependant isolément soit le concept de modèle d'affaires, soit le concept d'écosystème d'affaires. Le présent numéro thématique cherche à montrer qu'au contraire, appréhender les dynamiques concurrentielles à l'œuvre et la manière dont les entreprises y font face appelle à une analyse jointe du modèle d'affaires et de l'écosystème de l'organisation ou du système étudié. Comme nous l'apprend la théorie des systèmes d'innovation (Carlsson et Stankiewicz, 1991 ; Dosi et al., 1988), les connexions entre les acteurs de la connaissance jouent un rôle central dans le succès, la performance, le développement et la pérennité d'un système économique
Towards an integrated crowdsourcing definition
Crowdsourcing is a relatively recent concept that encompasses many practices. This diversity leads to the blurring of the limits of crowdsourcing that may be identified virtually with any type of internet-based collaborative activity, such as co-creation or user innovation. Varying definitions of crowdsourcing exist, and therefore some authors present certain specific examples of crowdsourcing as paradigmatic, while others present the same examples as the opposite. In this article, existing definitions of crowdsourcing are analysed to extract common elements and to establish the basic characteristics of any crowdsourcing initiative. Based on these existing definitions, an exhaustive and consistent definition for crowdsourcing is presented and contrasted in 11 cases.Estelles Arolas, E.; González-Ladrón-De-Guevara, F. (2012). Towards an integrated crowdsourcing definition. Journal of Information Science. 32(2):189-200. doi:10.1177/0165551512437638S189200322Vukovic, M., & Bartolini, C. (2010). Towards a Research Agenda for Enterprise Crowdsourcing. Leveraging Applications of Formal Methods, Verification, and Validation, 425-434. doi:10.1007/978-3-642-16558-0_36Brabham, D. C. (2008). Crowdsourcing as a Model for Problem Solving. Convergence: The International Journal of Research into New Media Technologies, 14(1), 75-90. doi:10.1177/1354856507084420Vukovic, M. (2009). Crowdsourcing for Enterprises. 2009 Congress on Services - I. doi:10.1109/services-i.2009.56Doan, A., Ramakrishnan, R., & Halevy, A. Y. (2011). Crowdsourcing systems on the World-Wide Web. Communications of the ACM, 54(4), 86. doi:10.1145/1924421.1924442Brabham, D. C. (2008). Moving the crowd at iStockphoto: The composition of the crowd and motivations for participation in a crowdsourcing application. First Monday, 13(6). doi:10.5210/fm.v13i6.2159Huberman, B. A., Romero, D. M., & Wu, F. (2009). Crowdsourcing, attention and productivity. Journal of Information Science, 35(6), 758-765. doi:10.1177/0165551509346786Andriole, S. J. (2010). Business impact of Web 2.0 technologies. Communications of the ACM, 53(12), 67. doi:10.1145/1859204.1859225Denyer, D., Tranfield, D., & van Aken, J. E. (2008). Developing Design Propositions through Research Synthesis. Organization Studies, 29(3), 393-413. doi:10.1177/0170840607088020Egger, M., Smith, G. D., & Altman, D. G. (Eds.). (2001). Systematic Reviews in Health Care. doi:10.1002/9780470693926Tatarkiewicz, W. (1980). A History of Six Ideas. doi:10.1007/978-94-009-8805-7Cosma, G., & Joy, M. (2008). Towards a Definition of Source-Code Plagiarism. IEEE Transactions on Education, 51(2), 195-200. doi:10.1109/te.2007.906776Brabham, D. C. (2009). Crowdsourcing the Public Participation Process for Planning Projects. Planning Theory, 8(3), 242-262. doi:10.1177/1473095209104824Alonso, O., & Lease, M. (2011). Crowdsourcing 101. Proceedings of the fourth ACM international conference on Web search and data mining - WSDM ’11. doi:10.1145/1935826.1935831Bederson, B. B., & Quinn, A. J. (2011). Web workers unite! addressing challenges of online laborers. Proceedings of the 2011 annual conference extended abstracts on Human factors in computing systems - CHI EA ’11. doi:10.1145/1979742.1979606Grier, D. A. (2011). Not for All Markets. Computer, 44(5), 6-8. doi:10.1109/mc.2011.155Heer, J., & Bostock, M. (2010). Crowdsourcing graphical perception. Proceedings of the 28th international conference on Human factors in computing systems - CHI ’10. doi:10.1145/1753326.1753357Heymann, P., & Garcia-Molina, H. (2011). Turkalytics. Proceedings of the 20th international conference on World wide web - WWW ’11. doi:10.1145/1963405.1963473Kazai, G. (2011). In Search of Quality in Crowdsourcing for Search Engine Evaluation. Advances in Information Retrieval, 165-176. doi:10.1007/978-3-642-20161-5_17La Vecchia, G., & Cisternino, A. (2010). Collaborative Workforce, Business Process Crowdsourcing as an Alternative of BPO. Lecture Notes in Computer Science, 425-430. doi:10.1007/978-3-642-16985-4_40Liu, E., & Porter, T. (2010). Culture and KM in China. VINE, 40(3/4), 326-333. doi:10.1108/03055721011071449Oliveira, F., Ramos, I., & Santos, L. (2010). Definition of a Crowdsourcing Innovation Service for the European SMEs. Lecture Notes in Computer Science, 412-416. doi:10.1007/978-3-642-16985-4_37Porta, M., House, B., Buckley, L., & Blitz, A. (2008). Value 2.0: eight new rules for creating and capturing value from innovative technologies. Strategy & Leadership, 36(4), 10-18. doi:10.1108/10878570810888713Ribiere, V. M., & Tuggle, F. D. (Doug). (2010). Fostering innovation with KM 2.0. VINE, 40(1), 90-101. doi:10.1108/03055721011024955Sloane, P. (2011). The brave new world of open innovation. Strategic Direction, 27(5), 3-4. doi:10.1108/02580541111125725Wexler, M. N. (2011). Reconfiguring the sociology of the crowd: exploring crowdsourcing. International Journal of Sociology and Social Policy, 31(1/2), 6-20. doi:10.1108/01443331111104779Whitla, P. (2009). Crowdsourcing and Its Application in Marketing Activities. Contemporary Management Research, 5(1). doi:10.7903/cmr.1145Yang, J., Adamic, L. A., & Ackerman, M. S. (2008). Crowdsourcing and knowledge sharing. Proceedings of the 9th ACM conference on Electronic commerce - EC ’08. doi:10.1145/1386790.1386829Brabham, D. C. (2010). MOVING THE CROWD AT THREADLESS. Information, Communication & Society, 13(8), 1122-1145. doi:10.1080/13691181003624090Giudice, K. D. (2010). Crowdsourcing credibility: The impact of audience feedback on Web page credibility. Proceedings of the American Society for Information Science and Technology, 47(1), 1-9. doi:10.1002/meet.14504701099Stewart, O., Huerta, J. M., & Sader, M. (2009). Designing crowdsourcing community for the enterprise. Proceedings of the ACM SIGKDD Workshop on Human Computation - HCOMP ’09. doi:10.1145/1600150.1600168Maslow, A. H. (1943). A theory of human motivation. Psychological Review, 50(4), 370-396. doi:10.1037/h0054346Veal, A. J. (Ed.). (2002). Leisure and tourism policy and planning. doi:10.1079/9780851995465.0000Dahlander, L., & Gann, D. M. (2010). How open is innovation? Research Policy, 39(6), 699-709. doi:10.1016/j.respol.2010.01.01
Two-Photon Imaging of Calcium in Virally Transfected Striate Cortical Neurons of Behaving Monkey
Two-photon scanning microscopy has advanced our understanding of neural signaling in non-mammalian species and mammals. Various developments are needed to perform two-photon scanning microscopy over prolonged periods in non-human primates performing a behavioral task. In striate cortex in two macaque monkeys, cortical neurons were transfected with a genetically encoded fluorescent calcium sensor, memTNXL, using AAV1 as a viral vector. By constructing an extremely rigid and stable apparatus holding both the two-photon scanning microscope and the monkey's head, single neurons were imaged at high magnification for prolonged periods with minimal motion artifacts for up to ten months. Structural images of single neurons were obtained at high magnification. Changes in calcium during visual stimulation were measured as the monkeys performed a fixation task. Overall, functional responses and orientation tuning curves were obtained in 18.8% of the 234 labeled and imaged neurons. This demonstrated that the two-photon scanning microscopy can be successfully obtained in behaving primates
Fast and Curious Management
L’essentiel du management.
L’ouvrage présente, sous forme de fiches synthétiques, un aide-mémoire sur les principales missions du manager :
prévoir
planifier
décider
coordonner
contrôle
Capabilities in small high-tech firms : A case of plural-Entrepreneurship: A case of plural-Entrepreneurship.
Purpose – The purpose of this paper is to address the issue of evaluating the
innovative/entrepreneurial capabilities of small firms in high-technology industries.
Design/methodology/approach – The approach taken is a literature review and case study.
Findings – The contribution of the paper is twofold: in the first part, it is tried to distinguish the
different forms of entrepreneurship existing. This leads to determine a form of entrepreneurship, plural
entrepreneurship, that is typical in high-tech start-ups. In the second part, it is then tried to evaluate the
innovative/entrepreneurial capabilities of a firm in such a framework. This is based on a longitudinal
case study of a high-tech start-up where we explore how different dimensions of entrepreneurship
coexist and interplay to create a firm’s innovative dynamics depending on its initial resources and those
added during the firm’s growth.
Originality/value – The paper is an original attempt to distinguish different notions of
entrepreneurship including the notion of plural-entrepreneurship and capabilities in a small enterprise.
Keywords Entrepreneurialism, Innovation, Small enterprises
Paper type Research pape
A Case study of a creative start-up: Governance, communities and knowledge management
International audienceThis work is an empirical illustration of the changing nature of governance structure in a small creative firm. The governance structure co-evolves with the division of knowledge and the division of labour. The paper is organised as follows: first we present the distinction between division of knowledge and division of labour in a knowledge-based framework and highlight some specificities of the knowledge worker. Then, in a second section, we present a case study of a creative SME in the sector of video games for mobile phones. This case study allows us to represent four different governance phases that we observed over a four-year time span. We then link these four governance phases with the evolution of the relation between the firm and different types of communities (communities of practice in which programmers from other firms participate, user communities ...). We show that the evolution of the governance structure has commonalities with the evolution of relations with the different communities and that those relations influence the division of knowledge and division of labour
